

2
4
5
6
7
8

13
17
21
25
36
41
46
54
55
60
65
71
75
86
93
97
99

104
116
120
123
127
131
137
142
147
151
156
160
165
170
176

Table	Of	Contents
Table	Of	Contents
©	2023	Jason	Maxham
Dedication
Meet	The	Troubleshooters
Part	1:	Introductions
The	Big	Idea
One-size-doesn’t-fit-all
The	Economics	Of	Troubleshooting
The	Right	Tool	For	The	Job
There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting
Beginnings,	Middles,	And	Ends
You	Won’t	Guess	The	Hard	Part
Is	Troubleshooting	A	Science?
Part	2:	Strategies
The	Order	Of	Things
Skillful	Questioning,	Part	1
Skillful	Questioning,	Part	2
Put	It	Down	And	Come	Back	To	It	Later…
Follow	The	Chain
Bare	Bones:	Back	To	The	Basics
Does	It	Need	To	Be	Fixed?
The	Phone	Is	Ringing,	So	Answer	It
Duplicate	The	Problem
Failing	To	Fail	(Duplicate	The	Problem,	Part	2)
Defaults	And	Reboots
Change	Just	One	Thing
The	Way	It	Is	And	The	Way	It	Was
Is	It	Plugged	In?
A	Different	Point	Of	View
Same	Symptom,	Different	Causes
Improving	the	Environment
Copy	One	That	Works
Let’s	Be	Reasonable
Know	Your	Limits
Where	Do	I	Begin?
What’s	Changed?
Dedicated	And	Shared	Resources
A	Common	Problem

Table	Of	Contents	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 2

182
192
196
206
211
221
231
236
242
247
252
254
256
258
261
264
267
270
274
277
281
284
292
299
303
309
313
325
328
337
345
349
352
360
365

384
391
397
399

Clear	Up	To	Here
Team	Spirit
Bottlenecks
How	Is	It	Supposed	To	Work?
Repair	Or	Replace?
The	50	Percent	Rule:	Repair	Or	Replace,	Revisited
Talking	About	Your	Problems
Starting	Over:	Rebuilding	And	Reinstalling
Border	Lines
If	You	Have	To	Force	It,	Something	Is	Probably	Wrong
What	We	Bring	With	Us:	“I	Want	One	Of	These”
What	Else	Could	I	Be	Doing?
Part	3:	Virtues
Skepticism
Listen	Up
Curiosity
Out	Of	Your	Vulcan	Mind
Creativity
Be	Present
Setting	Boundaries
Part	4:	Cleaning	Up
Is	This	Normal?	An	Ode	To	Data	Collection
Zen	And	The	Art	Of	Routine	Maintenance
Storm’s	A-comin’
Troubleshooting	Trees
Is	It	Really	Fixed?
Down	To	The	Roots
Moral	Authority
Making	A	List,	Checking	It	Off
Failure	Most	Foul:	Fraud	and	Sabotage
Release	The	Chaos	Monkeys:	Intentionally	Creating	Failures
You’re	Not	Done	Until	You	Tell	Someone	Else
The	Boy	Who	Cried	Wolf
Did	It	Ever	Work?
Network	Effects
On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At
Me!”
Accident	Causes	≠	Preventative	Measures
Acknowledgements
About	The	Author

Table	Of	Contents	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 3

©	2023	Jason	Maxham
All	rights	reserved.

Title:	The	Art	Of	Troubleshooting
Author:	Jason	Maxham
First	Edition:	May	8,	2014
This	Edition:	October	15,	2023

Visit	the	companion	web	site	at:
https://artoftroubleshooting.com/

Send	comments	and	feedback	to	the	author:
bookfeedback@artoftroubleshooting.com

©	2023	Jason	Maxham	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 4

https://artoftroubleshooting.com/
mailto:bookfeedback@artoftroubleshooting.com

Dedication
The	Art	Of	Troubleshooting	is	dedicated	to	my	Grandfathers.	One	was	an	artist,	the
other	a	troubleshooter:

John	H.	Maxham	(1915-1986)
Gerald	W.	Quade	(1923-2012)

Both	owned	and	operated	their	own	shops.	My	Grandpa	Maxham	was	a	commercial
artist,	making	signs	and	other	advertisements	in	Lebanon,	New	Jersey	at	Maxham	Signs.
My	Grandpa	Quade	was	an	auto	mechanic	who	ran	a	repair	shop	called	Safety	Service
in	Fairmont,	Minnesota.

Each	also	served	in	World	War	II	and	was	a	member	of	the	Greatest	Generation,	whose
legacy	I	strive	to	uphold	and	extend.

Dedication	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 5

Meet	The	Troubleshooters
While	doing	research	for	this	book,	I	conducted	interviews	with	ten	exceptional
troubleshooters.	These	people	are	problem-solvers	that	I	deeply	respect:	their	insights
were	invaluable	in	extending	and	refining	my	original	thesis.	Quotes	from	these
interviews	are	scattered	throughout	the	book;	as	you’ll	see,	they	said	some	very	pithy
things	on	the	subject	of	fixing	things.	Note:	quotes	have	been	edited	for	clarity	as
necessary.

Many	thanks	to	this	group	for	enduring	my	endless	questions	about	how	they	do	what
they	do.	I	learned	much,	about	machines	and	people,	talking	to	them.

Their	names	and	areas	of	troubleshooting	expertise	are:

Alex	Chaffee,	Programming
Ken	Fechner	MD,	Medicine
Jamie	Karrick,	Mechanics
Rich	Kral,	HVAC	(heating,	ventilation,	and	air	conditioning)
Karl	Kuehn,	Information	Technology
Dan	McCormick,	Mechanics
Mike	McCormick	PhD,	Information	Technology	and	Scientific	Equipment
Austin	Quade,	Information	Technology
Gerald	Quade,	Mechanics
Jeremy	Sheetz,	Mechanics

Meet	The	Troubleshooters	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 6

Part	1:	Introductions

Let's	throw	this	switch	and	get	started!
(image:	Jack	Delano	/	Library	of	Congress)

I	always	look	out	for	the	best	interests	of	the	client,	not	for	myself.	By	doing	that,	I
have	unconditional	trust.	That’s	what	I	like,	but	it’s	a	heavy	burden.	When	people
are	putting	all	their	trust	in	you,	you	want	to	make	sure	you’re	giving	them	the	best
of	what	you	have	to	offer.

Rich	Kral

Part	1:	Introductions	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 7

https://www.loc.gov/resource/fsac.1a34696/

The	Big	Idea

Everything	fails.

Rich	Kral

Exciting	or	mundane,	every	day	your	life	is	filled	with	purpose.	You	wake	up,	attempt	to	advance	your	goals,	and	then
fall	asleep	again	at	night.	All	around	you	are	machines,	amazing	inventions	that	can	amplify	your	intentions;	it	is
probably	difficult	to	imagine	your	life	without	them.	We’ve	developed	a	symbiotic	relationship	with	the	systems	at	the
heart	of	our	advanced	industrial	civilization.	When	they	work,	you	are	able	to	accomplish	amazing	feats,	experiencing
things	and	enjoying	a	standard	of	living	that	would	dumbfound	your	ancient	ancestors.	When	they	don’t…well,	that’s
why	you	are	reading	this,	right?

When	a	broken	machine	is	standing	between	you	and	your	goals,	it’s	time	to	take	action	and	get	your	hands	dirty.
Troubleshooting	is	about	getting	back	to	normal,	about	making	something	work	again.	Clever	inventions	enhance	our
lives	in	so	many	ways,	but	when	they	break	down	you	can	be	left	feeling	powerless.	I	want	to	put	you	back	in	control
by	giving	you	the	tools	and	mindset	needed	to	have	a	healthy	and	productive	relationship	with	the	machines	in	your
world.	It	doesn’t	matter	if	troubleshooting	is	your	profession,	as	we	all	are	dependent	on	machines	and	are	negatively

The	Big	Idea	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 8

impacted	when	they	fail.

Why	become	better	at	troubleshooting?	First	off,	it	might	be	a	matter	of	life	and	death.	There	are	times	when	we
literally	place	our	lives	in	the	hands	of	a	machine:	breathing	from	an	artificial	respirator	in	the	hospital,	or	the	smooth
operation	of	the	engines	on	an	airplane	that	is	cruising	along	at	37,000	feet.	In	these	cases,	the	benefits	of	a	quick
resolution	in	the	event	of	a	breakdown	are	self-evident.	Even	when	lives	aren’t	on	the	line,	speedily	getting	a	machine
working	again	allows	you	to	get	on	with	living	your	life.	Lastly,	there’s	nothing	quite	like	that	satisfying	“aha!”	moment
when	you	get	to	the	bottom	of	an	issue	and	fix	it	yourself.	Being	effective	in	this	way	stirs	the	soul.

A	toaster…
(image:	Tom	Hart	/	CC	BY	2.0)

Maybe	you’d	like	to	be	the	hero	at	home	by	being	able	to	fix	things	yourself.	On	the	job,	machines	can	either	help	or
hinder	your	work	objectives;	understanding	them	from	a	troubleshooter’s	perspective	can	be	the	key	to	your
livelihood.	With	the	right	attitude	and	knowledge,	you	can	easily	save	the	day	at	the	office,	factory,	farm,	or	shop	as
well.	Tights	and	a	cape	are	optional.	For	professional	troubleshooters,	what	I	will	describe	are	the	fundamental	skills	to
keeping	your	job	and	moving	up.	If	you	manage	troubleshooters	(and,	if	you	manage	humans,	you	do),	then	knowing
the	core	strategies	will	allow	your	team	to	do	more	with	less.	Solving	problems	that	make	others	cry	will	be	especially
good	for	your	reputation	and	your	wallet.	Don’t	worry,	I’m	not	going	to	ask	for	a	cut	of	your	inevitable	pay	raises.	The
fact	that	you	learned	it	from	me	is	payment	enough.

The	Crucible	Inside	The	Cubicle

The	origin	of	The	Art	Of	Troubleshooting	can	be	traced	back	to	2002,	when	I	started	a	software	company	with	three
friends	(it	was	called	Discovery	Mining,	if	you’re	interested).	Looking	back,	I	can	say	that	the	most	interesting	part	of
my	job	as	CTO	was	troubleshooting	really	complicated	problems.	And,	Discovery	Mining	had	the	perfect	recipe	for
monster-sized	issues:	millions	of	lines	of	computer	code,	nearly	1,000	servers	in	multiple	data	centers,	teams	that	were
thousands	of	miles	apart,	and	demanding	clients	spread	across	the	globe	that	were	always	pushing	the	limits	of	our
capabilities	(sample	quote:	“I	only	tried	to	put	10	billion	documents	in	a	folder…do	you	think	that	would	slow	it
down?”).	As	you	can	imagine,	we	had	to	deal	with	some	very	tricky	problems.

Our	company,	a	complicated	web	of	interconnected	systems,	both	human	and	machine-based,	gave	me	a	peek	into
the	surprising	complexity	of	our	world.	Surprising	because,	simple	machines,	when	interconnected,	can	behave	in
unexpected	ways.	Oh,	and	that	“simple	machine”	is	probably	more	complex	than	you	thought,	once	you	start	to
carefully	observe	it.

The	Big	Idea	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 9

http://www.flickr.com/photos/thart2009/5169473451/
http://creativecommons.org/licenses/by/2.0/deed.en

The	methods	described	here	were	largely	discovered	in	the	cleansing	fire	of	a	startup	experiencing	tremendous	growth.
Some	are	profound,	some	are	so	simple	they	border	on	the	obvious,	but	they	all	are	the	result	of	butting	up	against	the
same	problems	over	and	over	again.	Eventually,	I	began	to	take	notice	of	what	worked	and	what	didn’t;	from	there	I
started	to	abstract	some	general	principles	of	troubleshooting.	While	I	feel	our	company’s	high-pressure	environment
was	unique	in	driving	me	to	think	deeply	about	troubleshooting,	I’m	not	claiming	I’m	the	first	human	being	to	ever	use
these	problem-solving	methods.	Many	were	taught	to	me	by	colleagues.	Others	were	discovered	accidentally	when
nothing	else	worked.

Naming	Names

Doing	research	for	the	book,	I	interviewed	some	great	troubleshooters,	asking	them	explicitly	about	their	methods.	I’ve
also	asked	plenty	of	questions	about	fixing	things	in	casual	conversation.	Yes,	I’ve	been	known	to	bring	it	up	at	a	party
—but	only	after	I’m	buzzed—pressing	a	slightly	intoxicated	stranger	for	the	finer	details	of	their	latest	computer	or	car
breakdown	can	be	highly	amusing.	Over	time,	I	began	to	notice	that	many	of	the	strategies	I	had	discovered	through
my	own	trials	were	also	known	to	others.

Discovering	that	the	essence	of	what	I	knew	was	in	use	elsewhere,	in	a	variety	of	occupations,	was	a	big	breakthrough.
This	confirmed	my	hunch	that	there	was	an	opportunity	to	describe	troubleshooting	in	general	terms,	across	fields	and
industries.	However,	one	thing	I	noticed	was	that	even	the	great	troubleshooters	I	met	weren’t	very	self-aware	of	their
processes.	That	is,	they	were	good	at	problem-solving,	but	had	a	hard	time	explaining	why	they	were	good.	I’ve	begun
to	speak	using	terms	like	“isolation,”	“narrowing,”	and	“prerequisites	for	operation”	(a	category	that	includes
troubleshooting’s	most	famous	question:	“Is	It	Plugged	In?”).	These	concepts	have	come	up	when	speaking	with	other
troubleshooters,	but	rarely	as	conscious	strategies	being	explicitly	employed.	Therefore,	I	think	that	just	by	bringing	the
core	concepts	to	the	surface	and	assigning	names	to	them,	we	can	raise	the	quality	of	troubleshooting	in	the	world.
Because	often	giving	a	name	to	something	is	enough	to	bring	it	into	your	awareness	and	adopt	its	use.	I	believe	that
how	we	talk	about	things	matter,	so	nothing	would	please	me	more	than	propagating	a	lexicon	of	terms	that
troubleshooters	everywhere	can	use	when	discussing	problem-solving.

The	Goal

Unlike	other	works	that	may	deal	with	troubleshooting	a	specific	system	or	ones	that	have	tips	geared	towards	a
particular	field	or	industry,	I’m	interested	in	identifying	the	general	principles	needed	to	bring	any	system	back	to
“working.”	That	is,	an	actual	set	of	practical	strategies	that	will	help	you	fix	anything	from	a	toaster	to	a	nuclear	reactor.
Human	beings	have	been	depending	on	machines	for	hundreds	of	years	now,	so	it	should	be	no	surprise	that	almost
every	scheme	you	can	think	of	to	fix	them	has	been	tried!	Of	course,	not	every	strategy	is	equal	and	so	you’ll	find	the
ones	I’ve	chosen	to	be	tops	for	simplicity	and	effectiveness.	These	are	the	best	of	the	best.

The	other	area	in	which	I	believe	I	can	make	a	significant	contribution	to	the	troubleshooting	arts	is	what	I’ll	call	“the
human	side.”	If	there	is	a	deeper	lesson	to	be	gleaned	from	my	experience,	it’s	that	all	machine	problems	are	human
problems.	To	some	people,	that	will	be	disconcerting,	especially	if	you	think	that	the	“world	of	machines”	is	different,
an	area	separate	from	humans.	At	first,	I	resisted	this	insight	because	I	saw	machines	as	a	refuge	from	the	petty	goings-
on	of	the	human	race.	Machines	might	be	unintelligent,	but	at	least	they	weren’t	malicious	and	inane!	But	woe	to	the
troubleshooter	that	ignores	the	human	side	of	the	equation:	your	effectiveness	will	be	severely	limited.	You	can	go	so
much	further	if	you	take	into	account	this	critical	dimension	of	troubleshooting:

By	becoming	an	expert	in	untangling	the	language	people	use	to	describe	their	problems.
By	leveraging	the	psychology	of	problem-solving.
By	getting	inside	the	head	of	an	operator	experiencing	a	problem.
By	knowing	the	economics	behind	what	you	produce	and	how	that	affects	the	resources	available	for	repair.
By	looking	at	the	context	in	which	troubleshooting	takes	place:	not	just	the	surrounding	and	supporting	systems,
but	the	team	and	the	larger	organization	of	which	it	is	a	part.

Lastly,	and	perhaps	most	importantly:

By	understanding	yourself,	and	how	you	best	function	as	a	troubleshooter.

The	Big	Idea	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 10

https://artoftroubleshooting.com/2012/02/14/is-it-plugged-in/

…and	a	nuclear	reactor.	The	underlying	principles	of	fixing	them	are	the	same.
(image:	Bjoern	Schwarz	/	CC	BY	2.0)

Implicit	in	communicating	all	this	hard-won	wisdom	is	the	belief	that	anyone	can	learn	how	to	be	a	good
troubleshooter.	I	certainly	wasn’t	born	to	fix	machines,	it	was	a	skill	I’ve	acquired	over	time.	How	much	quicker	my
development	would	have	been	if	I	had	access	to	the	ideas	I’ve	collected	for	you!	All	the	principles	I’ve	written	about,
I’ve	personally	seen	in	action.	I	know	that	troubleshooting	can	be	learned:	everything	here	I	have	either	successfully
taught	to	someone	else	or	learned	from	others.	If	I	thought	that	troubleshooting	was	just	something	you	were	destined
to	do,	I	wouldn’t	have	bothered	writing	this.

Further,	I	want	troubleshooting	to	be	recognized	as	a	field	in	its	own	right.	I	hope	some	day	that	being	acquainted	with
the	principles	here	will	be	considered	a	basic	life	skill	for	anyone	wanting	to	better	themselves	(like	knowing	how	to
drive	a	car	or	use	a	computer).	The	funny	thing	about	troubleshooting	is	that	everyone	does	it,	but	there	is	little	formal
training	or	even	awareness	of	it	as	a	discipline.	I’ve	never	seen	a	class	offered	that	was	devoted	to	the	topic	in	a
general	way.	Consider	this	a	first	attempt	at	cataloging	the	entire	field,	a	Linnaeus-inspired	work	to	establish	a

The	Big	Idea	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 11

http://www.flickr.com/photos/bagalute/5127578547/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Carl_Linnaeus

framework	for	others	to	extend.	I	dub	thee	Homo	Fixitus.

It’s	beyond	the	scope	of	this	work,	but	the	principles	here	also	contain	lessons	for	problems	in	everyday	life.	If	“all
machine	problems	are	human	problems,”	you	will	see	applications	far	beyond	your	workshop.	I	leave	it	up	to	you	to
figure	that	out	on	your	own…

Defending	The	Obvious

I	include	a	lot	of	“simple”	strategies,	like	asking	“Is	it	plugged	in?”	However,	I	also	point	out	that	this	simple	strategy	is
representative	of	a	bigger	concept	called	“prerequisites	for	operation.”	Even	so,	you	may	think,	“All	he’s	doing	is
pointing	out	the	obvious!”	If	all	I	accomplish	here	is	to	give	you	a	fresh	appreciation	of	what’s	in	front	of	you,	I’ll	take
that	as	a	compliment.	Troubleshooting	is	about	the	solution	staring	you	in	the	face,	if	you’d	just	get	out	of	your	head
and	focus	on	the	situation.	Unfortunately,	what’s	“obvious”	is	often	ignored!	If	I	can	merely	acquaint	you	with	what’s
already	known	to	work,	you’d	be	well	on	your	way	to	mastering	the	art	of	troubleshooting.	On	top	of	that,	the	original
contribution	I	hope	to	make	is	to	show	you	the	rich	and	complicated	implications	of	these	“simple”	and	“obvious”
strategies	alongside	a	panoramic	view	of	our	advanced	industrial	civilization.

About	The	Terms	I	Use:	Systems,	Devices,	and	Machines

For	the	purpose	of	this	work,	the	terms	“system,”	“device,”	and	“machine”	are	interchangeable.	You	may	think	of	a
mechanical	contraption	when	you	think	of	a	machine,	but	here	a	“machine”	can	also	be	digital,	or	have	no	physical
presence	at	all	except	as	an	abstract	process	(like	a	computer	program).	This	broad	definition	encompasses	a	wide
variety	of	things:	assembly	lines,	computers,	internal-combustion	engines,	network	routers,	airplanes,	mobile	phones,
water	heaters,	nuclear	reactors,	software,	etc.	Basically,	anything	that	accomplishes	work	and	can	malfunction.

Also,	remember	that	“systems,”	“devices,”	and	“machines”	are	themselves	composed	of	smaller	subsystems	(often
“machines”	in	their	own	right).

References:

Header	image:	Harris	&	Ewing,	photographer.	(1924)	First	radio	vacuum	tube.	Carl	W.	Mitman,	Curator	of
Engineering,	US	Nat’l	Museum,	holding	what	is	believed	to	be	the	1st	radio	tube.	United	States,	1924.	[June]
[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2016887335/.

The	Big	Idea	was	originally	published	September	13,	2011.

Notes:

The	Big	Idea	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 12

https://www.loc.gov/item/2016887335/

One-size-doesn’t-fit-all

You	are	thinking:	something	used	to	work	and	we’re	trying	to	get	back	there.

Ken	Fechner

I	have	often	stopped	and	wondered:	“Could	all	the	strategies	in	The	Art	Of	Troubleshooting	be	condensed	down	to	a
single	troubleshooting	script?”	Is	there	One	Recipe	to	Rule	Them	All?

Many	people	I’ve	talked	to	about	troubleshooting	have	asked	the	same	question.	So,	I	went	and	figured	it	out.	If	you
want	the	script,	here	it	is:

The	Universal	Troubleshooting	Recipe

1.	 Find	the	problem.
2.	 Fix	it.

Okay…but	it’s	not	really	that	useful,	is	it?	Sorry,	that’s	the	best	I	can	do.	I’ve	tried	to	expand	this	beyond	a	2-step
process,	but	it	gets	too	specific	too	quickly.	Also,	there	are	just	too	many	“if	this	happens,	then	do	this”	clauses.	For
example,	take	“duplicating	the	problem”:	pursuing	this	strategy	is	often	a	necessary	step	to	discovering	the	cause	of	an
issue.	Or,	not:	some	problems	can	be	duplicated	with	100%	reliability	and	you	won’t	be	that	much	closer	to	finding	a
solution	(for	example,	a	car	that	hasn’t	run	in	50	years	will	be	very	reliably	broken).	Given	enough	time	and	resources,
it’s	theoretically	possible	that	all	problems	could	be	duplicated.	However,	it	would	be	a	waste	of	resources	to	single-
mindedly	pursue	that	strategy	to	the	exclusion	of	others	that	could	provide	a	quicker	resolution.

One-size-doesn’t-fit-all	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 13

https://artoftroubleshooting.com/strategies/
https://artoftroubleshooting.com/2011/12/13/duplicate-the-problem/

Similarly,	you	might	be	able	to	“copy	one	that	works,”	but	then	again	you	might	not	have	an	extra	one	on	hand	and	so
that	would	be	a	dead	end.	Rebooting	or	restoring	the	default	settings	may	magically	resuscitate	a	machine	in	just	a	few
minutes—I’ve	witnessed	this	hundreds	of	times.	But,	I’ve	also	seen	this	tactic	have	no	effect.	Other	problems	may
require	a	rigorous	data	collection	program	executed	over	weeks	or	months	to	identify	and	fully	understand	the
underlying	issue.	Also,	sitting	above	any	given	strategy	is	the	possibility	of	not	fixing	something,	which	has	its	own
considerations.	Presumably,	the	tests	to	forgo	troubleshooting	would	also	need	to	be	included	in	our	Universal
Troubleshooting	Recipe.	Finally,	economics	will	have	the	last	word:	there	may	be	paths	that	are	very	effective,	but
can’t	be	considered	because	of	the	cost.

I	think	you	get	the	point:	there’s	not	a	single	troubleshooting	strategy	that	consistently	produces	results	 all	the	time	in
all	situations.	Therefore,	I	think	that	a	universal	theory	of	troubleshooting	can’t	be	reduced	to	a	single	recipe	on	a	card
—it’s	more	like	a	whole	box	of	recipe	cards.	When	it	comes	to	food,	depending	on	what	you’re	craving	and	what
ingredients	are	on	hand,	you	try	to	choose	the	right	recipe.	If	you	have	apples	and	want	something	sweet,	apple	pie	is	a
good	choice.	If	you’re	making	dinner	and	you	have	a	hunk	of	beef	and	some	vegetables,	then	a	beef	stew	is	a	tasty
match.	Choosing	the	right	recipe	for	your	ingredients	and	occasion	is	the	key	to	good	cooking:	you	can’t	make	apple
pie	with	beef,	and	a	beef	stew	made	from	apples	is	going	to	taste	like…something’s	missing.

Just	one	recipe	for	everything?	That	would	be	boring…
(image:	liz	west	/	CC	BY	2.0)

Within	a	discipline	or	industry,	there	will	be	opportunities	to	develop	a	single	troubleshooting	recipe.	If	you	only	work
on	a	certain	make	and	model	of	car	every	day,	you’d	inevitably	hone	your	routine	for	maximum	efficiency,	including
only	the	most	effective	strategies	and	placing	them	in	a	set	order.	Those	refinements	may	only	be	a	narrow	subset	of	all
the	ideas	presented	in	The	Art	Of	Troubleshooting—the	rest	being	superfluous.	I	guess	the	analogy	to	cooking	would
be	a	chef	that	only	worked	with	a	single	main	ingredient:	if	you	only	had	apples	and	made	the	same	apple	pie	every
day,	there	wouldn’t	be	much	use	in	learning	how	to	filet	a	fish	or	debone	a	ham.

However,	life	isn’t	that	predictable:	the	problems	you’ll	need	to	troubleshoot	will	come	in	an	infinite	variety	of	forms
and	won’t	care	about	your	set	routines.	In	other	words,	be	prepared	to	handle	not	only	apples,	but	also	pears,	bananas,
fish,	potatoes,	beans,	rice,	and	anything	else	that	can	be	eaten!	In	that	way,	choosing	a	troubleshooting	strategy	that	is
complimentary	to	your	problem	is	just	like	cooking:	the	problem	is	the	ingredients	and	the	strategy	is	the	recipe.
Depending	on	the	context,	a	given	machine	failure	may	need	duplication,	or	a	change	of	sequence,	or	a	reboot,	or
something	to	be	plugged	in,	or	something	completely	different.	Mix	and	match	as	needed	and	 voilà!

Until	the	particulars	are	known,	you	can’t	say	for	sure	which	strategy	is	going	to	be	best	suited	for	a	given	situation.
This	is	why	I	believe	troubleshooting	is	an	art:	deciding	which	strategy	is	most	appropriate	will	be	a	judgement	call,
aided	by	your	experience	and	intuition.	The	key	is	familiarity	and	flexibility:	intimately	knowing	the	core

One-size-doesn’t-fit-all	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 14

https://artoftroubleshooting.com/2012/04/16/copy-one-that-works/
https://artoftroubleshooting.com/2011/11/22/does-it-need-to-be-fixed/
https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/
http://www.flickr.com/photos/calliope/405772944/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2011/12/13/duplicate-the-problem/
https://artoftroubleshooting.com/2011/09/28/the-order-of-things/
https://artoftroubleshooting.com/2011/12/21/defaults-and-reboots/
https://artoftroubleshooting.com/2012/02/14/is-it-plugged-in/

troubleshooting	strategies	will	allow	you	to	select	the	one	you	think	is	going	to	have	the	biggest	payoff.	Add	to	that	a
flexible	mindset	which	compels	you	to	switch	strategies	if	your	first	choice	isn’t	working.	That	is,	if	your	vision	of	a	pie
doesn’t	work	out,	maybe	those	apples	could	go	in	the	stew	after	all .	Bon	appétit!

Fitting	Into	A	Structured	Approach

I	believe	that	my	methods,	as	formulated	in	the	strategies,	are	the	quickest	way	to	a	resolution	for	the	vast	majority	of
failures.	However,	there	may	be	some	situations	that	require	a	very	rigorous	approach	to	troubleshooting.	I’ve	worked
on	some	extremely	complex,	intermittent	failures	that	have	benefited	(or	would	have	benefited!)	from	a	formal	process.
For	these	rare	cases,	my	strategy	and	“question-based”	approach	(as	employed	in	my	one-page	Universal
Troubleshooting	Guide)	may	not	be	enough	to	satisfy	your	need	for	structure.

By	now,	I’ve	seen	a	fair	number	of	generic	problem-solving	processes.	In	addition	to	the	reasons	above,	I	want	to
address	them	because	you	might	be	curious,	or	your	organization	might	promote	their	use.	Here’s	one	such	example	of
a	“structured	troubleshooting	approach”	from	Amir	Ranjbar’s	book	Troubleshooting	and	Maintaining	Cisco	IP
Networks:

Excerpt:	“Flow	Chart	of	a	Structured	Troubleshooting	Approach”	from	Troubleshooting	and	Maintaining
Cisco	IP	Networks	by	Amir	Ranjbar.	1

Ranjbar’s	method	has	the	following	elements	in	this	order:

Step	1.	Defining	the	problem
Step	2.	Gathering	facts
Step	3.	Analyzing	information
Step	4.	Eliminating	possibilities
Step	5.	Proposing	a	hypothesis
Step	6.	Testing	the	hypothesis
Step	7.	Solving	the	problem

Troubleshooting	and	Maintaining	Cisco	IP	Networks 	1

In	the	abstract,	this	is	a	great	way	to	think	about	troubleshooting.	For	very	tough	problems	you	might	need	to	be	this
rigorous,	documenting	your	progress	through	these	steps	as	you	inch	towards	a	solution.	However,	just	like	my	2-step
process	above,	it’s	a	bit	too	general	to	be	helpful	as	a	quick	troubleshooting	recipe	for	an	actual	problem.	Which	facts
do	I	gather?	What	possibilities	do	I	eliminate?	How	do	I	choose	a	hypothesis	to	test?	It’s	going	to	take	some	thought	to
translate	these	steps	into	specific	actions.

You	may	be	wondering	how	my	methods	relate	to	a	generic	problem-solving	process	like	the	one	above.	The	answer	is
that	the	strategies	I	present	are	a	kind	of	shorthand:	they	include	all	of	the	above	steps,	often	in	combination,	in	an
implicit	way.	For	instance,	let’s	examine	the	“What’s	changed?”	strategy	within	the	framework	of	Ranjbar’s	process.
The	brief	summary	of	this	strategy	is	to	find	recent	changes	to	a	machine	(or	its	environment),	with	the	idea	that	one	is
causing	a	failure.	Discovering	the	changes	incorporates	steps	2-3	(“gathering	facts”	and	“analyzing	information”).
Choosing	one,	rolling	it	back,	then	observing	the	result	combines	steps	4-6	(“eliminating	possibilities,”	“proposing	a
hypothesis,”	and	“testing	the	hypothesis”).	The	power	of	a	strategy	like	“What’s	changed?”	is	that	it	takes	the	generic
approach	and	fills	in	the	blanks,	swiftly	nudging	you	in	a	direction	that	has	been	very	profitable	for	others.

One-size-doesn’t-fit-all	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 15

http://www.tasteofhome.com/recipes/apple-beef-stew
https://artoftroubleshooting.com/the-right-questions-a-universal-troubleshooting-guide/
https://artoftroubleshooting.com/2013/03/05/whats-changed/

References:

Header	image:	Harris	&	Ewing,	photographer.	ARMY,	U.S.	NEW	FIELD	SERVICE	SHOE.	[Between	1911	and	1917]
[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2016853755/.
1	Amir	Ranjbar,	Troubleshooting	and	Maintaining	Cisco	IP	Networks	(Indianapolis:	Cisco	Press,	2010),	pgs.	32,	41.

One-size-doesn’t-fit-all	was	originally	published	March	30,	2013.

Notes:

One-size-doesn’t-fit-all	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 16

https://www.loc.gov/item/2016853755/

The	Economics	Of	Troubleshooting

What’s	the	simplest	thing	I	can	do	that’s	going	to	have	the	greatest	effect	in	the	least	amount	of	time?

Dan	McCormick

When	fixing	things,	I	often	find	myself	thinking	about	economics.	All	work	involves	economic	considerations,	but	I	feel
there	are	unique	aspects	of	repairing	machines	that	deeply	touch	the	core	principles	of	the	“dismal	science.”
Economics	are	inescapable	for	the	troubleshooter	and	will	set	the	boundaries	for	the	“if,”	“how,”	and	“when”	of	fixing
something.

We	employ	machines	to	fulfill	our	worldly	wants,	which	are	without	end.	Satisfying	our	infinite	desires	with	our	limited
means	has	been	called	the	“fundamental	economic	problem”:

Yet	despite	the	comparative	abundance	of	products	and	services	emanating	from	the	process	of	social
cooperation,	the	economic	problem	remains:	Wants	continue	to	exceed	the	means	or	resources	for	their
attainment.	The	persistence	of	the	problem	of	scarcity	means	that	even	in	a	modern,	highly	developed,	and
productive	society	decisions	have	to	be	made	regarding	how	the	various	scarce	resources	should	be	directed	to
the	satisfaction	of	the	more	urgently	felt	wants	of	society’s	members.

Thomas	C.	Taylor	1

Look	at	the	contents	of	any	junkyard	or	landfill	and	you’ll	realize	troubleshooting	is	a	stellar	example	of	this

The	Economics	Of	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 17

“fundamental	economic	problem.”	Broken	machines	vastly	outnumber	the	resources	to	fix	them!	Given	the	disparity
between	the	quantity	of	breakdowns	and	the	means	to	mend	them,	the	end	result	is:	what	gets	fixed	is	subject	to	a
harsh	but	necessary	triage	based	on	people’s	most	pressing	needs.	Only	the	most	important	systems	will	be	worthy	of
being	fixed.

When	a	machine	breaks	down,	the	entirety	of	the	economic	calculation	that	gave	rise	to	its	origin	will	be	thrown	into
stark	relief.	Questions	arise:	What	was	its	purpose?	What	need	was	it	fulfilling?	Is	the	need	still	present?	If	so,	what
resources	will	be	diverted	to	fix	the	machine?	Are	there	other,	more	pressing	needs	that	I	(or	my	organization)	must
satisfy	first?	What	combination	of	labor	and	capital	should	be	used	to	fix	it?	Will	you	use	your	own	human	resources	to
make	the	fix	or	outsource	the	labor	to	a	repair	shop?	Will	you	choose	a	cheap,	quick	fix	or	go	with	a	more	expensive,
longer-lasting	solution?	Or,	should	the	machine	be	replaced	instead?	And,	will	it	all	be	paid	for	with	cash	or	credit?

The	issues	behind	these	questions	are	always	present	for	the	business	owner,	but	they	are	easy	to	ignore	when	a
machine	is	happily	humming	away.	Once	a	system	is	installed,	people	tend	to	forget	about	the	underlying	economic
motives	behind	its	acquisition—that	is	until	a	malfunction	occurs.	Troubleshooting	is	deeply	linked	with	economics
because	choosing	a	course	of	action	demands	an	answer	to	the	above	questions.	You	can	see	that,	if	the	original	want
is	to	continue	being	satisfied,	an	economic	decision	will	need	to	be	made	in	conjunction	with	the	 technical	matters	of
fault	finding	and	correction.	In	fact,	the	two	influence	each	other:	what	is	discovered	by	the	troubleshooter	informs	the
economics	(i.e.,	“this	is	what	is	wrong	and	this	is	how	much	it’ll	cost	to	fix”)	and	the	economics	dictate	what	is
possible	for	the	troubleshooter	(i.e.,	“you	have	these	resources	with	which	to	discover	the	problem	and	make	a
repair”).

Scarce	Resources

A	wide	array	of	means	are	available	to	the	troubleshooter:	tools,	colleagues,	consultants,	spare	parts,	manuals,	etc.
Each	of	these	may	be	optional,	but	time	is	needed	for	all	repairs:

A	man’s	time	is	always	scarce.	He	is	not	immortal;	his	time	on	earth	is	limited.	Each	day	of	his	life	has	only	24
hours	in	which	he	can	attain	his	ends.	Furthermore,	all	actions	must	take	place	through	time.	Therefore	time	is	a
means	that	man	must	use	to	arrive	at	his	ends.	It	is	a	means	that	is	omnipresent	in	all	human	action.

Murray	Rothbard	2

The	smart	troubleshooter	understands	the	spectrum	of	possible	fixes	and	what	resources	each	requires	to	be	properly
executed.	The	resolution	of	these	two	opposing	forces,	the	desire	for	the	best	possible	fix	and	the	limited	means	to	pay
for	it,	is	achieved	through	negotiation	and	compromise.	This	dance	is	most	prevalent	in	outsourced	repair	work,	like	an
auto	repair	shop.	The	person	bringing	in	their	malfunctioning	machine	wants	to	get	it	working	again	by	spending	the
fewest	possible	resources.	Professional	troubleshooters	have	their	own	incentives:	to	make	a	living	and	to	pursue	only
those	repairs	that	will	result	in	long-term	customer	satisfaction	(and	therefore	repeat	business).	This	tension	is	healthy
and	ensures	that	both	sides	are	left	better	off	from	whatever	transaction	is	finally	negotiated.	For	the	machine	owner,
the	value	of	the	repair	must	exceed	its	cost.	The	troubleshooter	must	be	adequately	compensated	and	feel	like	a	project
is	worth	their	effort	(i.e.,	there	isn’t	something	better	they	could	be	spending	their	time	on).	Sometimes	these	opposing
forces	will	not	be	able	to	find	mutual	satisfaction,	and	this	means	that	a	whole	spectrum	of	repairs	will	never	happen.

That	reminds	me	of	a	situation	I	found	myself	in	as	a	teenager	back	in	high	school.	It	began	when	I	ran	over	a
concrete-filled	tire	rim	with	my	beloved	first	car.	No	one	(especially	my	parents)	believed	me	that	the	rim	was	knocked
loose	by	the	wind	and	that	it	rolled	right	in	front	of	my	car.	But,	that’s	what	happened.	Anyway,	the	“spatial	conflict”
with	this	“flying	saucer”	(my	Dad’s	chosen	term)	left	a	giant	hole	in	my	exhaust	system.	There	wasn’t	much
troubleshooting	involved	in	the	diagnosis—the	source	of	the	deafening	noise	that	announced	my	arrival	from	miles
away	was	obvious.	What	was	hard	was	getting	the	damage	repaired	on	my	tiny	budget	of	“almost	nothing”	(I	think	it
was	about	$50).	My	goals	were	modest:	to	shut	up	that	insanely	loud	car	long	enough	to	sell	it	to	another	reckless
teenager	like	myself.	Getting	it	fixed	almost	didn’t	happen	at	all.	I	took	the	car	to	every	repair	shop	in	the	area,
explained	the	situation	and	my	modest	means,	and	heard	many	a	derogatory	chuckle	in	reply:	“You	want	me	to	fix	that
for	$50?!	Ha	ha	ha!”	I	finally	found	a	student	mechanic	who	agreed	to	make	the	noise	go	away	for	the	meager	sum	I
could	offer.	If	I	had	only	$40	to	spend	instead	of	$50,	or	if	the	damage	had	been	greater,	my	car	would	have	ended	up
in	the	junkyard	and	been	just	another	example	of	where	resources	fall	short	of	what’s	required	to	make	a	repair.

The	Economics	Of	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 18

For	some	troubleshooters,	this	negotiation	of	wants	and	means	will	be	partially	hidden.	If	you	maintain	machines
internally	for	your	organization	on	a	salary,	then	someone	decided,	before	you	were	hired,	that	the	value	of
maintaining	those	systems	was	worth	more	than	the	the	salary	they	offered	you	for	the	position.	If	the	value	was	less,
the	hire	would	not	have	occurred	at	all!	But	even	in	this	situation,	the	economics	of	troubleshooting	are	not	far	away
and	it’s	in	your	best	interest	to	be	nimble	in	your	ability	to	offer	a	range	of	solutions.	Troubleshooters	can	also	act	like
entrepreneurs,	envisioning	new	solutions	to	maintenance	problems	that	save	money	for	their	organization	or	its	clients.

Like	Snoop	Dogg	said,	this	should	be	on	your	mind—especially	when	you’re	fixing	something!
(image:	Elembis	/	Wikimedia	Commons)

Opportunity	Costs

When	working	on	a	troubleshooting	project,	I	like	to	keep	the	idea	of	“opportunity	costs”	in	the	back	of	my	mind.	In
the	preface	to	his	book	Cost	and	Choice,	the	Nobel	Prize-winning	economist	James	M.	Buchanan	illustrates	the
concept	in	a	hilarious	way:

You	face	a	choice.	You	must	now	decide	whether	to	read	this	Preface,	to	read	something	else,	to	think	silent
thoughts,	or	perhaps	to	write	a	bit	for	yourself.	The	value	that	you	place	on	the	most	attractive	of	these	several
alternatives	is	the	cost	that	you	must	pay	if	you	choose	to	read	this	Preface	now.	This	value	is	and	must	remain
wholly	speculative;	it	represents	what	you	now	think	the	other	opportunity	might	offer.	Once	you	have	chosen	to
read	this	Preface,	any	chance	of	realizing	the	alternative	and,	hence,	measuring	its	value,	has	vanished	forever.
Only	at	the	moment	or	instant	of	choice	is	cost	able	to	modify	behavior.

James	M.	Buchanan	3

I	guess	the	same	goes	for	the	time	you	spend	reading	my	writing.	I	hope	you	didn’t	forgo	a	hot	date!	The	economics	of
troubleshooting	may	be	an	interesting	topic,	but	it’s	not	that	interesting.

Anyway,	if	it	wasn’t	clear	from	Buchanan’s	antics,	opportunity	costs	are	the	result	of	making	choices	about	how	we
spend	our	resources.	If	you	decide	to	read	an	illuminating	tract	like	this,	you	can’t	also	use	the	time	to	go	to	the	movies
(by	the	way,	I	applaud	your	decision).	Money	earmarked	for	a	new	TV	can’t	also	be	spent	on	a	new	refrigerator.	When
you	divert	your	means	towards	a	specific	end,	an	infinite	number	of	other	possibilities	go	unfulfilled.	The	benefits	that

The	Economics	Of	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 19

https://commons.wikimedia.org/wiki/File:Assorted_United_States_coins.jpg

could	have	been,	from	the	pursuits	that	weren’t	chosen,	are	called	“opportunity	costs.”

If	you	had	unlimited	time	to	muck	around	with	a	broken	machine,	then	the	choices	you’d	make	about	how	to	repair	it
would	mean	little.	This	strategy	or	that	strategy,	who	would	care?	You’d	eventually	figure	it	out,	but	there’d	be	no
emotional	weight	to	either	a	brilliant	solution	or	a	meandering	slog.	However,	our	time	to	make	repairs	is	limited,
likewise	are	our	other	resources.	You	can’t	be	turning	a	wrench,	reading	a	manual,	calling	technical	support,	and
shopping	for	a	replacement	all	at	once.	You	must	make	a	choice	about	what	direction	a	repair	is	going	to	take	and
forgo	the	rest.	Speaking	of	choice,	every	troubleshooting	situation	involves	a	staggering	amount	of	decisions:	repair	or
replace,	pursue	a	long-term	fix	or	a	short-term	hack,	outsource	or	do	the	work	yourself,	purchase	used	parts	or	new,
and	on	and	on.	Even	routine	maintenance	involves	opportunity	costs:	the	time	and	money	you	allocate	in	order	to
prevent	future	problems	cannot	be	spent	elsewhere	now.

The	takeaway	is:	in	order	to	make	sure	your	resources	are	continually	deployed	in	the	most	efficient	manner	possible,
periodically	ask	yourself	“What	else	could	I	be	doing	with	my	time	and	money?”

References:

Header	image:	Lee,	R.,	photographer.	(1939)	Auto	parts	store.	Corpus	Christi,	Texas.	United	States,	Nueces	County,
Corpus	Christi.	Texas,	1939.	Feb.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017782247/.
1	Thomas	C.	Taylor,	An	Introduction	to	Austrian	Economics,	Chapter	2.	Social	Cooperation	and	Resource
Allocation	(pg.	14).
2	Murray	Rothbard,	Man,	Economy,	and	State,	Chapter	1.	The	Concept	of	Action	(pg.	5).
3	James	M.	Buchanan,	Cost	and	Choice:	An	Inquiry	in	Economic	Theory,	Preface.

The	Economics	Of	Troubleshooting	was	originally	published	May	28,	2013.

Notes:

The	Economics	Of	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 20

https://www.loc.gov/item/2017782247/
http://mises.org/library/introduction-austrian-economics
http://mises.org/library/man-economy-and-state-power-and-market
http://www.econlib.org/library/Buchanan/buchCv6c0.html#Preface

The	Right	Tool	For	The	Job

I’ve	used	all	kinds	of	things	for	tools...	I	remember	being	stuck	on	a	bicycle	race	course	and	3	of	the	5	bolts	that
held	my	chain	ring	on	fell	out.	I	didn’t	have	an	Allen	wrench,	but	I	found	a	twig	in	the	forest	that	was	the	right
size.	You	can	make	your	own	tools	to	solve	a	problem,	but	it	all	comes	back	to	the	fact	that	your	brain	is	the	best
tool.

Mike	McCormick

Stanley	Kubrick’s	2001:	A	Space	Odyssey	contains	cinematic	images	that	are	so	powerful,	you	find	them	flashing
before	your	eyes	years	later.	That	happened	to	me	as	I	sat	down	to	write	this:	I	had	a	vision	of	my	favorite	sequence
from	the	film,	called	“The	Dawn	of	Man.”	In	it,	we	see	a	monkey	sitting	amongst	a	pile	of	bones.	The	ape	picks	up	a
large	femur	and	begins	to	swing	it	around,	tapping	it	here	and	there	on	the	skeletons	that	lay	on	the	ground	around
him.	His	initial	strokes	are	playful	and	tentative,	but	they	quickly	gain	momentum.	Soon,	ribs	are	flying	and	skulls	are
being	crushed	in	a	frenzied	rage.	An	“Aha!”	moment	occurs	for	the	monkey:	“This	isn’t	just	a	useless	piece	of	bone!	I
can	use	it	to	strike	harder	and	faster	than	my	hands	will	allow.”	With	this	invention,	new	food	sources	are	now
possibilities.	Kubrick	drives	home	the	point	for	the	audience	by	cutting	to	a	large	beast	(a	Tapir)	hitting	the	ground.	The
horns	in	Richard	Strauss’	Thus	Spoke	Zarathustra	rise	to	underscore	the	importance	of	what	would	normally	be	just	an
animal	playing	around	with	some	bones:	this	ape	has	discovered	the	first	tool!	Later	on,	we	see	the	sinister	side	of	this
discovery,	that	tools	can	be	used	for	good	or	evil.	That	same	bone	has	been	turned	into	a	weapon	(a	kind	of	tool)	and
used	against	a	rival	pack	of	apes	to	deliver	a	vicious	beating.

The	Right	Tool	For	The	Job	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 21

2001	is	fiction,	and	it	could	have	happened	differently…	But,	imagine	being	there	at	that	moment,	when	primitive	Man
first	picked	up	a	rock	or	a	bone	or	a	branch	and	realized	it	was	more	than	just	a	rock,	bone,	or	branch.	Every	time	you
wield	a	screwdriver	or	a	hammer,	you	are	part	of	that	amazing	human	legacy	of	technological	innovation	that	stretches
all	the	way	back	to	the	discovery	of	that	first	tool.

Today,	the	number	of	tools	available	to	help	you	accomplish	your	goals	number	in	the	millions.	General	ones,	like	the
venerable	hammer	or	Swiss	Army	Knife,	can	be	used	in	a	wide	variety	of	situations.	Others,	like	a	strawberry	stem
remover,	can	be	amazingly	specific	and	narrow	in	their	application.	Also,	tools	aren’t	just	things	you	can	hold	in	your
hand:	there	exists	a	whole	slew	of	things	to	help	you	find	and	fix	problems	in	the	digital	world	too	(debuggers,	log
analyzers,	etc.).

But	before	we	talk	about	having	the	“right	tool	for	the	job,”	maybe	it’s	a	good	idea	to	look	at	the	pain	of	choosing:

The	Wrong	Tool

I’ve	had	moments	in	my	life	that	made	me	feel	even	more	primitive	than	that	monkey	in	“The	Dawn	of	Man”:	they
usually	involve	having	the	wrong	tool	for	the	job.	One	such	frustrating	example	occurred	when	I	first	tried	to	wire	a
computer	network	for	one	of	the	fledgling	companies	I	co-founded.	I	was	stringing	network	cables	around	our	office:
the	goal	was	to	connect	wall	outlets	with	a	patch	panel	on	the	other	end.

Terminating	these	wires	without	the	right	tools	will	drive	you	insane.
(image:	ChrisDag	/	CC	BY	2.0)

First	off,	using	a	razor	blade,	just	stripping	the	insulation	from	the	wires	was	its	own	challenge.	I’d	sometimes	nick	the
conductor	and	have	to	start	over	by	cutting	the	whole	thing	off	(yes,	I	know	now	that	there’s	also	a	tool	for	removing
wire	insulation).	But,	that	was	nothing	compared	to	getting	the	wires	into	the	posts	on	the	patch	panel	or	wall	outlets.
Using	just	a	screwdriver,	it	was	so	hard	to	keep	the	wire	in	line	with	the	top	of	the	post.	I	would	have	it	lined	up,	and
then	it	would	slip	off.	Getting	the	screwdriver	to	penetrate	in	just	the	right	place	was	also	challenging:	it	frequently
ended	up	embedded	in	my	thumb!	Cue:	swearing	that	would	make	a	sailor	blush.	I	tried	everything	I	could	with	the
tools	I	had	on	hand.	In	my	mind,	I	built	up	a	picture	of	network	cable	installers	as	supernatural	beings:	master
craftsmen	who	could	make	those	damned	little	wires	rest	neatly	within	their	posts.	After	an	hour,	I	was	only	able	to	do
one	before	throwing	up	my	hands	in	frustration	and	retiring	for	the	night.	Even	so,	the	one	cable	I	was	able	to
terminate	was	a	mess,	with	the	posts	bent	and	deep	scratches	from	my	screwdriver	everywhere.

The	next	day,	I	went	back	to	the	store	where	I	bought	the	cabling	materials	and	had	a	chat	with	the	owner.	I	told	him
my	tale	of	woe,	how	terminating	network	wires	was	clearly	the	realm	of	divine	beings.	He	walked	me	back	to	the	aisle
with	the	network	cables	and	thrust	a	“punch-down	tool”	in	my	hand.	I	brought	it	back	home	and	punched	down	my

The	Right	Tool	For	The	Job	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 22

https://www.chefn.com/products/stemgem-strawberry-huller
http://www.flickr.com/photos/chrisdag/3105133088/
http://creativecommons.org/licenses/by/2.0/deed.en

first	connection	with	my	new	tool.	The	difference	blew	my	mind. 	What	was	incredibly	frustrating	before	was	now	the
simplest	thing	in	the	world:	even	a	child	could	terminate	network	cables.	The	punch-down	tool	even	made	a	satisfying
“ka-ching”	sound	as	it	did	its	work!

The	Right	Tool…

Tools	are	born	from	the	frustrations	of	pioneers	who	try	to	do	something	for	the	first	time.	Then	they’re	honed	by	those
who	come	after	and	try	to	make	a	living	doing	what	those	first-movers	have	set	in	motion.	Like	plants	and	animals,
tools	evolve	over	time,	incorporating	revelations	of	better	ways	to	accomplish	a	task.	When	you	buy	a	tool,	you’re
buying	more	than	just	an	object:	you’re	buying	the	sum	of	what	humanity	knows	about	how	to	best	do	a	job.	Be
grateful	that	you	didn’t	have	to	endure	the	pain	that	lead	to	the	creation	of	a	tool,	you	get	to	tap	into	this	fount	of	hand-
held	knowledge	with	just	a	swipe	of	your	credit	card.	As	you	can	see	from	my	experience	with	terminating	network
cables,	the	right	tool	can	make	a	job	go	from	“impossible”	to	“easy.”

If	you’re	doing	something	unique	and	off-the-shelf	tools	aren’t	available,	consider	making	your	own.	But,	I	don’t	have
to	suggest	this,	necessity	will	force	you!	You’ll	know	when	to	become	a	toolmaker:	it’s	when	you	need	to	repeatedly	do
a	time-consuming	or	frustrating	task.	Consider	improvising	with	tools	from	other	trades	or	industries.	I’ve	often	taken
things	that	weren’t	necessarily	made	for	my	particular	situation	and	adapted	them	for	my	purposes	with	great	effect.	Of
course,	my	accomplishments	pale	in	comparison	to	the	undisputed	King	of	Tool	Improvisation:	MacGyver.	I	still
remember	the	episode	of	MacGyver	(“The	Prodigal”)	where	he	made	a	harpoon	launcher	from	a	telescope.	That’s
world-class	tool	improvisation!

Try	doing	this	with	a	spatula…
(image:	Lewis	Hine	/	The	U.S.	National	Archives)

You’ll	recall	that	there	are	two	steps	you	need	to	take	in	any	troubleshooting	exercise:	1)	finding	the	problem	and	2)
executing	the	fix.	You	might	associate	tools	with	just	step	#2,	but	they	are	critical	for	the	entire	process.	Diagnosing	a
problem	may	require	different	tools	than	the	repair	phase,	but	they	are	tools	nonetheless.	Tools	for	problem	discovery
usually	include	information	gathering	devices	like	meters,	gauges,	and	probes.	There	will	be	some	tools	that	are
required	for	both	phases:	that’s	because	finding	the	cause	of	a	problem	often	requires	disassembly	to	allow	the
observation	of	internal	components.	When	it	comes	time	for	reassembly,	chances	are	you’ll	need	the	same	tools.

…At	The	Right	Time

Possessing	the	right	tool	is	only	half	the	battle.	The	competent	use	of	a	tool	also	requires:

The	Right	Tool	For	The	Job	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 23

https://en.wikipedia.org/wiki/MacGyver
http://macgyver.wikia.com/wiki/List_of_problems_solved_by_MacGyver
http://www.flickr.com/photos/usnationalarchives/7495913806/

Knowing	how	the	tool	works	and	being	proficient	in	its	use.
Knowing	when	to	use	the	tool.
Having	the	tool	available	when	it’s	needed.

Any	one	of	these	pitfalls	could	be	a	reason	why	the	best	tool	for	the	job	is	not	used.	How	many	times	have	you	been
on	the	roof	and	discovered	the	tool	you	need	is	inconveniently	located	3	floors	below	in	the	basement?	Or,	it	was
sitting	in	your	toolbox	just	a	few	feet	away,	but	you	forgot	that	it	existed?	Good	“toolsmanship”	requires	the	functioning
of	the	most	important	tool	of	all:	your	mind.	After	all,	a	tool	is	just	an	inanimate	object–you	are	the	bridge	that
connects	the	reality	of	a	situation	with	the	most	effective	means	available.

References:

Header	image:	Highsmith,	C.	M.,	photographer.	(2015)	 Implements	inside	an	old	blacksmith’s	shop	at	the	West
Virginia	State	Farm	Museum…	United	States,	Point	Pleasant,	West	Virginia,	2015-05-09.	[Photograph]	Retrieved
from	the	Library	of	Congress,	https://www.loc.gov/item/2015631952/.

The	Right	Tool	For	The	Job 	was	originally	published	June	11,	2013.

Notes:

The	Right	Tool	For	The	Job	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 24

https://www.loc.gov/item/2015631952/

There’s	A	Fine	Line	Between	Engineering,	Invention,
And	Troubleshooting

Essentially,	all	models	are	wrong,	but	some	are	useful.

George	Box

After	writing	about	troubleshooting	for	a	while,	one	of	the	unexpected	questions	that	arose	was:	“Where	does	my
subject	end?”	This	prolonged	mystery	led	to	temptations	of	the	“grass	is	greener”	variety.	When	you	write	about
something	long	enough,	boredom	will	have	you	venturing	off	into	related	fields	for	some	stimulation.	Not-so-related
fields	too:	when	I	grew	tired	of	my	chosen	topic	of	repair,	I	procrastinated	by	starting	two	other	books	that	had	nothing
to	do	with	troubleshooting.

Now,	there’s	nothing	wrong	with	expanding	the	horizon	of	your	thesis	by	introducing	related	topics.	Those	bordering
territories	are	interesting	places	to	take	readers	and	give	them	context	for	your	main	argument.	However,	if	you	indulge
your	tangential	whims	too	much,	you	will	eventually	get	a	work	about	life,	the	universe,	and	everything.	I	thought	I
showed	restraint	by	sticking	close	to	my	chosen	topic,	but	not	everyone	agreed.	One	reader’s	review	said:	“It	[The	Art
Of	Troubleshooting]	sets	out	to	be	a	sort	of	generic	manual	for	everything.	I	see	where	Mr.	Maxham	is	coming	from	in
this	grand	idea,	but	it	doesn’t	work	and	I	think	it	never	could.”	Of	course,	I	disagree.

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 25

https://en.wikiquote.org/wiki/George_E._P._Box#Empirical_Model-Building_and_Response_Surfaces_.281987.29
http://en.wikipedia.org/wiki/Life,_the_Universe_and_Everything

When	I	finally	understood	the	boundaries	of	my	topic,	it	was	a	relief	because	I	wrote	for	much	longer	than	I	originally
intended.	What	happened?	I’ve	found	that	writing	is	an	unpredictable	process	of	discovery,	one	that	can	take	you	far
away	from	your	intended	destination.	The	act	of	organizing	my	thoughts,	explaining	them	clearly,	and	researching
supporting	material	often	led	me	to	unexpected	places.	The	whole	process	was	expansive	because	it	exposed	the	gaps
in	my	reasoning,	as	well	as	the	missing	context	required	for	a	reader	to	understand	my	arguments;	likewise,	new
implications	of	my	thoughts	would	unexpectedly	appear	and	demand	an	explanation.

When	it	comes	to	the	topic	of	troubleshooting,	two	neighboring	fields	that	I	like	to	visit	are	engineering	and	invention.
But,	where	are	the	precise	border	lines	between	them?	When	I’ve	mentioned	my	work	on	troubleshooting,	people	will
often	launch	into	their	favorite	stories	of	inspired	tinkering	or	problem-solving.	The	fact	that	many	of	these	good	yarns
don’t	involve	repair	means	to	me	that	a	fog	obscures	the	distinction	between	the	three	disciplines.	I	think	this	is	partly
related	to	the	fact	that	the	people	who	are	good	at	one	are	often	good	at	the	others.	But,	it	also	speaks	to	the	fluidity	of
our	own	selves:	to	get	along	in	life	you	need	to	be	part	fixer,	implementer,	and	dreamer.	You	may	forget	which	role	led
to	which	result,	so	it’s	easy	to	understand	the	confusion.	Therefore,	I	want	to	address	the	differences	directly	and	in-
depth.	Not	for	a	love	of	semantics,	but	because	I	think	the	distinctions	are	interesting	and	useful.

Thomas	Edison	is	one	of	history’s	great	problem-solvers,	mixing	imagination	with	organized	effort	to	make
new	ideas	come	to	life.	Making	something	work	for	the	very	first	time	and	then	fixing	it	when	it	breaks	both

rely	upon	complimentary	skills.
(image:	Library	of	Congress)

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 26

https://artoftroubleshooting.com/2014/11/22/border-lines/
http://www.loc.gov/pictures/item/brh2003000453/PP/

The	Need,	Above	All

You	may	have	heard	someone	say	that	“necessity	is	the	mother	of	invention.”	Allow	one	of	history’s	greatest	inventors
to	elaborate:

None	of	my	inventions	came	by	accident.	I	see	a	worthwhile	need	to	be	met	and	I	make	trial	after	trial	until	it
comes.	What	it	boils	down	to	is	one	per	cent	inspiration	and	ninety-nine	per	cent	perspiration.

Thomas	Edison

It	may	surprise	you	that	this	“worthwhile	need”	drives	not	only	the	inventor,	but	also	the	engineer	and	troubleshooter.
They	all	serve	necessity,	but	with	differing	means	to	the	same	end.	With	this	as	our	starting	point,	we’ll	see	how	these
three	roles	advance	our	goals	in	different	but	complimentary	ways.	Let’s	start	with	some	basic	definitions:

Engineer:	“a	person	who	has	scientific	training	and	who	designs	and	builds	complicated	products,	machines,
systems,	or	structures.”
Inventor:	“one	who	creates	or	introduces	something	new.”
Troubleshooter:	“a	person	who	finds	and	fixes	problems	in	machinery	and	technical	equipment	(such	as
computers).”

Here’s	my	quick	summary	of	the	three	disciplines	that	gets	at	the	heart	of	their	differences:

Engineers	implement	existing	Machine	Models,	often	adapting	them	to	novel	conditions.
Inventors	create	and	improve	Machine	Models.
Troubleshooters	restore	a	specific	instance	of	a	Machine	Model.

What	is	a	Machine	Model?	Read	on.

Lest	we	get	too	wrapped	up	in	our	abstractions,	it’s	good	to	remember	that	 “the	map	is	not	the	territory.”
Likewise,	the	model	is	not	the	machine.

(image:	A.	Ruger	/	Library	of	Congress)

The	Machine	Model

The	process	of	fixing	a	machine	is	made	with	constant	reference	to	what	I	call	the	 Machine	Model,
a	conceptual	understanding	of	a	system	that	includes	its	component	parts,	how	they	are	arranged,	and	the	ways	they

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 27

http://www.merriam-webster.com/dictionary/engineer
http://www.merriam-webster.com/thesaurus/inventor
http://www.merriam-webster.com/dictionary/troubleshooter
http://en.wikipedia.org/wiki/Map%25E2%2580%2593territory_relation
http://www.loc.gov/item/73694546/

should	interact.	(Please	note	my	expansive	definition	of	the	word	“machine”	that	I	introduced	in	the	Big	Idea:
“anything	that	accomplishes	work	and	can	malfunction.”)	A	given	Machine	Model	can	be	very	broad,	incorporating
whole	classes	of	systems	(e.g.,	“cars,”	“computers,”	or	“printers”).	At	this	level	of	conceptualization,	the	parts	and	their
arrangements	may	be	similarly	abstract.	For	cars,	the	model	might	simply	be	“4-wheeled	transportation	with	a	chassis,
gasoline	or	electric	powertrain,	steering	wheel,	brakes,	seating,	and	control	pedals.”	This	sweeping	Machine	Model
includes	millions	of	cars,	past	and	present,	including	the	Ford	Model	T,	Rolls	Royce	Phantom,	Toyota	Camry,	Dodge
Dart,	etc.

Machine	Models	can	also	be	very	narrow	and	extremely	detailed,	pertaining	to	only	a	specific	manufacturer’s	product
(e.g.,	a	Boeing	777,	Toastmaster	1B14,	or	IBM	RS/6000).	In	these	cases,	the	model	can	include	schematics,	diagrams,
manuals,	statements	of	“description	and	operation,”	and	long	lists	of	parts.	The	term	can	also	refer	to	things	used	as
components	in	the	creation	of	larger	systems,	but	which	are	still	machines	in	their	own	right	(e.g.,	switches,	engines,
gears,	batteries,	etc.).

There	can	be	Machine	Models	which	are	elemental	and	include	just	a	single	function:

A	simple	machine	with	a	complicated	name:	the	single-pole,	single-throw	switch.
(image:	Iainf	/	Wikimedia	Commons)

There	are	also	those	that	are	extremely	complicated,	incorporating	many	smaller	subsystems:

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 28

https://artoftroubleshooting.com/2011/09/13/the-big-idea/
http://query.nytimes.com/gst/fullpage.html?res=9502E7D71E31F931A35753C1A9679D8B63
https://commons.wikimedia.org/wiki/File:SPST-Switch.svg

The	“flame	bucket”:	a	simple	name	for	a	complicated	machine.
(image:	Abby	Martin,	David	Timmerman,	John	Wachtel	/	Library	of	Congress)

As	they	are	created	by	people,	Machine	Models	can	be	sparse,	erroneous,	incomplete,	or	of	little	practical	value.	The
Black	Box	is	a	good	example	of	a	model	that	isn’t	very	helpful	for	troubleshooting.	The	term	implies	a	closed	system,
where	the	only	known	parameters	are	inputs	and	outputs.	Although	the	Black	Box	qualifies	as	a	conceptual
understanding	of	how	a	system	works,	it’s	not	one	that	can	easily	be	used	for	problem-solving.

Lastly,	in	case	you	think	that	you’ve	never	relied	on	a	Machine	Model,	I	will	note	that	owners	and	operators	are
perhaps	the	most	ubiquitous	users	of	these	forms.	One	consequence	of	a	conceptual	understanding	of	a	machine	is	the

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 29

http://www.loc.gov/pictures/item/al1331.sheet.00013a/
https://artoftroubleshooting.com/2013/02/14/failing-to-fail-duplicate-the-problem-part-2/

creation	of	expectations	for	how	it	will	work:	every	time	you	put	the	key	in	the	ignition	of	your	car	or	press	the	power
button	on	your	computer,	you	are	anticipating	it	functioning	in	a	specific	way.	This	goal-oriented	perspective	may	be
superficial	compared	to	the	original	designer’s	understanding,	but	there’s	no	doubt	you	are	relying	on	a	Machine
Model	as	an	end	user.

Engineers,	inventors,	and	troubleshooters	all	interact	with	the	Machine	Model;	it	is	the	common	thread	that	binds	these
three	disciplines	together.

A	mechanic	straightens	a	fender:	making	a	system	function	again	is	at	the	core	of	troubleshooting.	That	a
machine	once	worked,	representing	an	ideal	to	restore,	is	a	crucial	distinction	separating	fixing	from

invention	and	engineering.
(images:	Esther	Bubley	/	Library	of	Congress	[left,	right])

The	3	Fields	Interact	With	The	Machine	Model

The	Machine	Model,	whether	it’s	broad	or	narrow,	complete	or	partial,	is	the	framework	that	guides	the	repair	process.
If	a	malfunction	represents	a	deviation	from	the	model’s	ideal,	then	repair	is	an	attempt	to	restore	that	ideal.	Fixing
something	would	be	impossible	without	these	forms	because	they	provide	the	necessary	information	for	“how	it	should
work.”	As	they	are	abstractions,	good	models	distill	the	important	parts	of	a	system	into	an	efficient	mental	package.
Their	compact	nature	allows	them	to	be	easily	shared,	both	for	replicators	(manufacturers)	and	fixers	(troubleshooters).

Troubleshooters	are	guided	by	existing	models	to	perform	their	restorative	actions	on	broken	systems.	Engineers	also
employ	these	same	Machine	Models,	but	deploy	them	in	new	contexts,	straddling	the	known	and	unknown	with	their
work.	The	adaptation	of	a	specific	model	for	new	projects	is	the	organizing	principle	for	many	engineering	firms.	There
are	those	that	design	airplanes,	some	may	draft	plans	for	fantastic	new	toilets,	and	others	churn	out	schematics	for
computer	chips.	Again,	these	successful	system	frameworks	are	extant,	but	the	challenge	of	engineering	is	making
them	work	for	fresh	applications.

Now	that	we	understand	the	concept	of	models	and	how	engineers	use	them,	we	can	further	distinguish	engineering
from	invention.	While	there’s	no	doubt	that	engineering	is	a	highly	creative	endeavor,	taking	the	wondrous	bounty	of
science	and	applying	it	to	novel	situations	to	satisfy	our	desires,	the	creation	of	radically	new	machine	models	is
outside	its	purview.

Let’s	consider	the	design	and	construction	of	a	water	desalination	plant.	The	specifics	of	its	construction	may	be	totally
unique:	the	location	of	the	building,	salinity	of	the	water	supply,	energy	source,	capacity,	etc.	After	its	completion,
there	may	not	be	another	facility	in	the	whole	world	that	is	exactly	the	same.	However,	if	the	plant	uses	existing
technology,	perhaps	one	like	reverse	osmosis,	you	can’t	call	the	process	that	leads	to	its	creation	an	act	of	invention.

What	then	is	invention?	Well,	new	Machine	Models	have	to	come	from	somewhere!	Their	origin	is	in	the	minds	of
inventors,	who	assuage	necessity	just	like	their	brethren,	but	in	wholly	original	ways.

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 30

http://en.wikipedia.org/wiki/End_user
https://www.loc.gov/pictures/item/2017861422/
https://www.loc.gov/pictures/item/2017861421/
http://en.wikipedia.org/wiki/Reverse_osmosis

A	primitive	Machine	Model	for	electric	light.
(image:	Achim	Grochowski	/	CC	BY	3.0)

A	Light	Turns	On

Engineering,	invention,	and	troubleshooting	all	use	the	Machine	Model	in	different	ways,	making	the	relationship
between	these	three	fields	rich	and	complicated.	To	show	you	why,	let’s	examine	one	of	the	most	useful	creations	ever
conceived:	electric	light.	You	may	think	of	Thomas	Edison	when	you	think	of	this	technology,	but	the	legend	of	the
“Wizard	of	Menlo	Park”	may	have	obscured	the	fact	that	Edison	didn’t	invent	artificial	light	or	even	the	lightbulb.
While	Edison	deserves	his	lauds	for	making	electric	light	commercially	viable	on	a	massive	scale,	the	groundwork	was
laid	well	before	his	time.

To	the	best	of	our	knowledge,	the	first	person	who	deliberately	created	usable	electric	light	was	 Francis	Hauksbee—in
1705!	Hauksbee’s	experiments	with	vacuums,	mercury,	and	static	electricity	led	to	the	creation	of	the	gas-discharge
lamp,	which	eventually	became	the	warm	neon	lights	that	dot	our	cityscapes	today.	You	could	argue	that	the	first
person	to	create	incandescent	light	was	Alessandro	Volta,	who	made	a	wire	glow	when	he	hooked	it	up	to	a	battery.
Pro	tip:	it’s	easy	to	be	the	first	when	you	just	happen	to	invent	the	battery	too.	That	observation	was	a	result	of	Volta’s
experiments	with	“voltaic	piles”	(also	repeated	by	me	in	the	4th	grade	with	a	Duracell,	which	resulted	in	a	burnt
finger).	While	Volta	is	credited	with	inventing	the	electric	battery,	I	haven’t	found	anything	that	indicates	he	made	the
link	between	that	hypnotic	glowing	wire	and	the	wondrous	possibilities	for	mass-produced	electric	light.

The	two	people	who	made	that	connection	are	the	true	progenitors	of	artificial	illumination,	but	it’s	likely	you	aren’t
familiar	with	their	names:	Humphry	Davy	and	Vasily	Petrov.	These	two	scientists	weren’t	working	together,	yet	around
the	year	1800	they	simultaneously	discovered	that	it	was	possible	to	produce	substantial	light	with	an	electric	current.
Davy,	a	British	chemist,	hooked	up	a	battery	to	carbon	sticks	and	watched	it	glow.	Petrov,	a	Russian	physicist,	did
similar	experiments,	even	noting	the	potential	for	electric	lighting	in	a	paper	published	in	1803	(“News	of	Galvanic-
Voltaic	Experiments”).	The	commercial	result	of	their	work	was	the	carbon	arc	lamp,	which	was	used	in	many	of	the
early	deployments	of	public	lighting:

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 31

http://commons.wikimedia.org/wiki/File:Lichtbogen_3000_Volt.jpg
http://creativecommons.org/licenses/by/3.0/deed.en
http://en.wikipedia.org/wiki/Francis_Hauksbee
http://en.wikipedia.org/wiki/Gas-discharge_lamp
http://en.wikipedia.org/wiki/Alessandro_Volta
http://en.wikipedia.org/wiki/Humphry_Davy
http://www.encyclopedia.com/doc/1G2-2830903379.html
http://en.wikipedia.org/wiki/Arc_lamp

Let	there	be	light!	The	Victoria	Embankment	in	London	gets	electric	street	lights	in	1878.
(image:	Wikimedia	Commons)

By	the	1870’s,	Davy	and	Petrov’s	simple	model	for	generating	light	(passing	current	through	a	suitable	medium)	was
still	the	basic	framework	around	which	researchers	were	innovating.	Work	centered	on	the	main	issues	preventing
electric	light	from	being	a	consumer	product	for	the	masses.	For	their	part,	carbon	arc	lamps	were	too	bright,	used	too
much	power,	and	were	dangerous:	they	emitted	harmful	UV	rays,	along	with	hazardous	sparks	and	heat.	All	these
factors	made	them	unsuitable	for	the	smaller	scale	and	confined	nature	of	a	home.	The	known	alternatives	for
incandescent	mediums	were	also	problematic:	they	would	be	spent	quickly,	melt,	or	ultimately	start	on	fire.

To	prevent	combustion	of	the	filament,	one	solution	was	to	enclose	the	apparatus	in	a	glass	globe	devoid	of	oxygen
(the	“bulb”	part	of	the	lightbulb).	However,	by	the	time	Edison	started	tinkering	this	was	already	“old”	technology,	first
being	patented	back	in	1841	by	Frederick	Mullins.	Unfortunately,	using	an	enclosure	created	further	issues:	it	was
difficult	to	achieve	a	good	vacuum	and	even	slight	combustion	of	the	filament	would	generate	a	black	soot	that	would
cloud	the	bulb,	blocking	the	light.	Creators	of	all	stripes	will	be	familiar	with	the	sometimes	frustrating	“one	step

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 32

http://en.wikipedia.org/wiki/Victoria_Embankment#Electrification
http://commons.wikimedia.org/wiki/File:Jablochkoff_Candles_on_the_Victoria_Embankment,_December_1878.jpg
http://www.edisontechcenter.org/ArcLamps.html
http://en.wikipedia.org/wiki/Frederick_Mullins

forward,	one	step	backward”	nature	of	design	decisions	like	this:	often	by	solving	one	problem,	another	one	will
appear	as	an	unintended	consequence!

Edison	and	many	other	brilliant	inventors	painstakingly	refined	the	model	of	the	lightbulb.	It	continues	to
evolve	today…

(image:	US	Patent	223898)

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 33

https://www.google.com/patents/US223898

Edison	focused	his	efforts	on	perfecting	two	critical	parts	of	the	prevailing	lightbulb	model:	the	filament	and	the
vacuum	in	the	glass	globe.	The	story	of	how	he	happened	upon	bamboo	is	serendipitous	and	legendary:	on	a	hot	day
Edison	raises	a	hand	fan	to	cool	himself,	notices	it	is	made	of	bamboo,	and	decides	to	give	it	a	try	as	a	filament	(after
having	rejected	thousands	of	other	candidates).	Japanese	bamboo	turned	out	to	be	a	high-resistance	material	that
burned	for	over	a	thousand	hours,	a	huge	improvement	over	previous	mediums.	On	top	of	that,	Edison	devises	an
ingenious	way	to	improve	the	vacuum	in	the	bulb	by	simultaneously	heating	the	bulb	while	using	a	Sprengel	pump	to
remove	the	air.	It’s	this	one-two	punch	of	a	better	filament	and	improved	vacuum	that	makes	the	light	bulb
commercially	viable	for	the	first	time.

But,	what	do	we	call	this	achievement?	The	centrality	of	the	Machine	Model	makes	it	easy	to	confuse	fixing,	creating,
and	implementing.	Given	that	Edison’s	work	on	the	lightbulb	was	within	the	boundaries	of	pre-existing	forms,
shouldn’t	we	call	it	“engineering?”	After	all,	he	was	taking	the	discoveries	of	scientists	(Davy	and	Petrov)	and	utilized	a
well-established	concept	of	electric	light.	On	the	other	hand,	trying	to	make	a	specific	thing	work	might	seem	more	in
line	with	troubleshooting.	Isn’t	swapping	out	various	filaments	like	changing	a	tire	or	replacing	a	fuse?

Examining	the	Machine	Model	that	prevailed	at	the	time	allows	us	to	answer	these	questions.	Before	Edison’s
improvements,	the	existing	concept	of	a	lightbulb	included	a	short	list	of	sub-optimal	filament	materials	(carbon,
platinum,	and	iridium)	enclosed	in	a	partial	vacuum.	The	arduous	work	at	Menlo	Park	(truly	in	the	“99%	perspiration”
category)	to	discover	a	new	material	and	improve	the	vacuum	stands	outside	the	definition	of	engineering.

The	unknowns	dealt	with	by	engineers	are	of	a	narrower	type:	the	specific	variables	of	the	time,	place,	and	purpose
that	will	see	the	application	of	a	given	technology.	The	systematic	research	that	finally	identified	bamboo	as	suitable
medium	for	incandescence,	along	with	the	utilization	of	the	Sprengel	pump,	took	humanity	far	beyond	the	scope	of	its
current	knowledge.	Edison	altered	the	model	of	the	lightbulb,	creating	something	wholly	original.	Any	time	a	Machine
Model	is	modified	or	born	anew,	an	undeniable	act	of	invention	has	occurred.

A	Fluid	Relationship

Given	the	ties	that	bind	them	together,	it	should	be	no	surprise	to	find:

Troubleshooters	who	are	adept	at	building	new	things.
Engineers	conjuring	up	wonderfully	imaginative	solutions	to	routine	problems.
Inventors	that	are	skillful	at	fixing	systems.

Why?	Necessity	is	the	mother	of	all	these	fields,	and	the	Machine	Model	is	the	common	and	repeatable	form	that	helps
them	meet	those	needs.	Once	this	is	understood,	even	subconsciously,	it’s	easy	to	switch	roles.	My	writing	has	focused
on	troubleshooting,	but	my	career	has	included	a	healthy	dose	of	engineering	(and	a	little	bit	of	invention).	I	was	very
good	at	fixing	the	systems	I	designed—because	I	was	the	model	maker!

Fixers,	creators,	and	implementers	each	view	the	Machine	Model	from	a	unique	perspective	that	fosters	an	easy
transition	between	the	three	disciplines:

Troubleshooters	have	the	most	pragmatic	approach	because	their	restorative	actions	serve	the	underlying	need	so
plainly.	As	they	are	often	asked	to	work	with	a	whole	class	of	machines	(e.g.,	an	automobile	mechanic	will	be
familiar	with	most	vehicles	in	common	use),	they	typically	understand	a	particular	Machine	Model	in	a	wide
variety	of	instances.	From	this	base	of	practical	experience,	it’s	a	short	distance	to	building	and	deploying	those
same	forms	in	new	contexts	(engineering).	Troubleshooters	also	easily	morph	into	inventors	when	the	pain	of
repetitive	breakdowns	prompt	improvements	to	the	Machine	Models	for	which	they	care.
Engineers	have	scientific	training	for	a	deeper	understanding	of	how	a	particular	Machine	Model	works.	However,
because	their	designs	are	meant	to	be	deployed	in	the	service	of	actual	customers,	they	are	no	strangers	to	hands-
on	work.	Engineers	acquire	solid	troubleshooting	skills	by	testing	their	schemes	before	they	are	fully	realized.	This
learning	continues	as	customers	identify	and	demand	resolution	to	problems	found	long	after	a	design	is	released
into	the	world.	Engineers’	theoretical	training,	along	with	client	pressures	and	competition	from	other	firms,	also
prime	them	to	imagine	fantastic	new	additions	to	the	Machine	Models	they	utilize.
Inventors	may	dream	up	entirely	new	designs,	but	their	foundation	is	typically	a	deep	understanding	of	existing
Machine	Models.	Edison	was	the	quintessential	example	of	this	approach,	being	grounded	in	the	state-of-the-art
while	simultaneously	letting	his	imagination	soar.	He	built	upon	previous	models,	leveraged	existing	technologies,
and	his	ideas	about	electric	light	didn’t	emerge	from	a	vacuum	(ba-dum	ching!).	Being	conversant	with	existing

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 34

http://www.edisontechcenter.org/incandescent.html
http://invention.si.edu/thomas-edisons-inventive-life
http://en.wikipedia.org/wiki/Sprengel_pump
http://en.wikiquote.org/wiki/Thomas_Edison
http://en.wikipedia.org/wiki/Sting_%2528percussion%2529

models	allows	inventors	to	easily	cross	over	into	engineering.	Also,	just	like	engineers,	inventors	must	test	their
designs	before	they	are	ready	for	manufacturing.	This	vetting	process	turns	them	into	capable	troubleshooters.

Lastly,	I	want	to	point	out	that	these	roles	extend	well	beyond	the	workshop.	Joseph	Campbell	may	not	have	written
about	them,	but	the	troubleshooter,	engineer,	and	inventor	are	vital	human	archetypes	that	are	essential	to	living	life.
When	it	comes	to	surviving	in	this	world,	often	we	would	just	like	to	fix	what	is	already	in	place.	Other	times,	we	need
to	build	along	the	lines	of	what	we	know	to	be	true.	There’s	also	a	time	to	be	guided	by	our	dreams,	boldly	pushing
into	the	unknown.

If	we	did	all	the	things	we	are	capable	of	doing,	we	would	literally	astound	ourselves.

Thomas	Edison

References:

Header	image:	Highsmith,	C.	M.,	photographer.	Contraption	on	wheels	in	Alaska.	United	States,	Alaska.	[Between
1980	and	2006]	[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2011630866/.

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting 	was	originally	published	April	4,	2015.

Notes:

There’s	A	Fine	Line	Between	Engineering,	Invention,	And	Troubleshooting	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 35

https://www.loc.gov/item/2011630866/

Beginnings,	Middles,	And	Ends

The	only	perfect	program	is	an	empty	file.

Alex	Chaffee

Recently,	I	was	sitting	in	the	hot	tub	at	a	hotel	in	Laughlin,	Nevada.	The	spa	jets	were	on	a	timer	and,	after	a	relaxing
soak,	the	timer	expired.	This	returned	the	jacuzzi	to	placid	stillness.	The	chilly	morning	air,	coupled	with	the	reset
button	that	was	seemingly	far	away,	prompted	the	following	conundrum:	should	I	brave	the	cold	to	turn	the	jets	back
on?	Or,	maybe	I	liked	it	better	without	them	running?	Yep,	deep	thoughts…	I	sat	there	and	hoped	someone	would
happen	by	and	turn	them	on	for	me,	saving	me	from	my	first-world	dilemma.

As	I	was	pondering	this,	the	air	jets	briefly	spurted	back	to	life!	Had	my	prayers	been	answered?	Alas,	it	was	a	false
victory	because	after	only	a	few	seconds	they	fell	silent	again.	I	assume	this	last	gasp	was	the	system	balancing	the
pressure	that	had	built	up	while	the	hot	tub	was	running.	I	also	noted	that	this	was	something	you’d	only	see	at	the	very
end	of	the	hot	tub’s	timer	cycle.

Beginnings,	Middles,	And	Ends	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 36

https://www.youtube.com/watch?v=bwvlbJ0h35A

This	throwaway	event	got	me	thinking	about	the	numerous	beginnings,	middles,	and	ends	you	will	see	as	a
Troubleshooter.	Specifically,	we’re	interested	in	examining	these	3	stages	during	normal	operation	and	over	a
machine’s	lifespan.	Because	different	and	unusual	things	happen	in	each	of	these	phases,	recognizing	which	stage	a
machine	is	in	can	be	extremely	useful.

Beginnings	are	important.
(image:	Nationaal	Archief)

Beginnings

The	important	institutions	of	humanity,	whether	religions,	cultures,	nations,	or	organizations,	all	have	accounts	of	their
origin	which	are	studied	with	reverence:

“In	the	beginning	God	created	the	heaven	and	the	earth.”
“The	Tao	gave	birth	to	One.	The	One	gave	birth	to	Two.	The	Two	gave	birth	to	Three.	The	Three	gave	birth	to	all
of	creation.”
“When	in	the	Course	of	human	events,	it	becomes	necessary	for	one	people	to	dissolve	the	political	bands	which
have	connected	them	with	another…”
“Bill	and	Dave…first	met	in	the	early	1930s	while	studying	radio	engineering	at	Stanford	University	in	Palo	Alto,
California.	Both	avid	outdoorsmen	with	a	rabid	fascination	for	electronics,	the	two	became	fast	friends,	spending
many	weekends	camping	and	fishing	in	the	wilds	of	the	Colorado	mountains.”

People	are	naturally	curious	about	the	backstory	of	something	they	deem	important,	whether	it’s	the	tale	of	how	their
parents	met,	a	famous	person’s	upbringing,	the	inspiration	for	a	bestseller,	or	the	key	ideas	that	preceded	a	major
scientific	breakthrough.	For	many	comic	book	fans,	the	story	behind	their	favorite	superhero’s	powers	is	the	most
intriguing	part	of	the	character.

I	think	origins	fascinate	us	because	we	are	prompted	to	play	a	mental	game	of	connect-the-dots.	Whenever	I	read	a
news	report	involving	violence	or	an	unfortunate	accident,	I	want	to	know	the	preconditions:	he	was	drunk	and
walking	by	himself	late	at	night	in	a	bad	neighborhood,	she	hired	the	cheapest	skydiving	instructor	that	could	possibly
be	found,	etc.	We	like	to	believe	that	by	knowing	how	something	bad	started,	we	could	prevent	it	from	happening	to
us.	Likewise	for	positive	outcomes:	she	went	to	Harvard	before	making	partner	at	her	law	firm,	he	was	almost	hit	by	a
bus	and	then	bought	a	winning	lottery	ticket,	etc.	In	life	we	can	sometimes	read	too	much	(or	too	little)	into
beginnings,	but	they	are	vitally	important	to	those	who	fix	machines.

When	a	machine	is	assembled	and	run	for	the	first	time,	some	special	things	need	to	happen.	The	many	 prerequisites

Beginnings,	Middles,	And	Ends	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 37

https://www.flickr.com/photos/nationaalarchief/5680140682
http://biblehub.com/kjv/genesis/1.htm
http://www.wright-house.com/religions/taoism/tao-te-ching.html#42
http://www.archives.gov/exhibits/charters/declaration_transcript.html
http://www.entrepreneur.com/article/197644
http://en.wikipedia.org/wiki/Origin_story#Notable_examples
https://artoftroubleshooting.com/2012/02/14/is-it-plugged-in/

for	operation	need	to	be	fulfilled,	including	adding	consumables	like	gasoline,	oil,	ink,	or	electricity.	Then,	the
machine	needs	to	be	configured	to	do	useful	work.	Lastly,	a	break-in	period	may	be	required,	running	above	or	below
a	target	level	of	usage,	to	ensure	the	longevity	of	certain	components.	Many	mass-produced	items	are	expected	to
simply	work	“out	of	the	box,”	so	these	initial	steps	are	frequently	done	as	part	of	the	manufacturing	process.	If	a
machine	is	re-made	by	your	effort,	you	must	manually	take	these	initial	baby	steps	that	would	normally	be	done	at	the
factory.

Just	like	it	was	thrilling	to	discover	that	Peter	Parker’s	powers	stemmed	from	a	chance	bite	by	a	radioactive	spider,	you
should	learn	the	backstories	of	the	machines	under	your	care	with	a	similar	level	of	enthusiasm.	Geek	confession:	I
followed	the	histories	of	the	systems	in	my	startup’s	infrastructure	with	the	zeal	of	an	obsessed	comic	book	fan.	“This
server	has	already	been	back	twice	to	the	manufacturer	for	crashing,”	“This	keyboard	was	involved	in	an	epic	coffee
spill,”	etc.

These	kinds	of	origin	stories	may	not	be	the	subject	of	a	big-budget	summer	blockbuster,	but	they	are	worthy	of	your
attention	if	you	are	responsible	for	ensuring	things	work	around	your	home	or	business.	History	is	something	to	screen
as	you	consider	whether	to	let	a	machine	into	your	Circle	of	Trust.	CarFax	is	a	good	example	of	a	company	that	is
dedicated	to	the	premise	that	backstories	matter:	for	a	used	car	buyer,	accident	history,	odometer	fraud,	or	title
problems	is	drama	best	avoided.

In	motion:	a	machine	does	useful	work	in	the	(hopefully	long)	middle	part	of	its	lifecycle.
(image:	Jet	Lowe	/	Library	of	Congress)

Middles

There’s	comparatively	less	to	say	about	middles	except	that,	like	a	caterpillar	or	centipede,	I	hope	there’s	 a	lot	of	it	for
your	machines.	While	beginnings	get	a	machine	ready,	middles	are	where	the	work	gets	done.	I	find	these	are	the	most
prevalent	causes	of	problems	in	the	Middle	phase:

Lack	of	routine	maintenance:	when	a	machine	has	a	reduced	lifespan,	inadequate	upkeep	is	often	to	blame.
Routine	maintenance	keeps	components	within	specification,	and	is	essential	for	a	machine	to	reach	its	expected
longevity.
Resource	exhaustion:	these	are	among	the	simplest	troubleshooting	problems	to	solve,	as	the	remedy	is	to	add
whatever	has	been	depleted:	gas,	oil,	ink,	batteries,	etc.	Operating	a	machine	to	do	work	consumes	these	means,
which	is	why	resource	exhaustion	is	associated	with	the	middle	stage	of	operation.

Assuming	any	problems	with	setup	and	break-in	were	handled	correctly,	the	middle	part	is	where	a	machine	just
Beginnings,	Middles,	And	Ends	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 38

https://www.youtube.com/watch?v=5dSvsp3dxvc
http://www.carfax.com/
http://www.loc.gov/pictures/item/ma1710.photos.222448p/

cranks	away,	churning	out	widgets,	highway	miles,	or	bytes.	I’ve	come	to	really	appreciate	well-tuned	systems	in	this
stage.	Perhaps	you’ve	encountered	a	machine	like	this,	one	that	is	broken	in	and	running	just	right.	With	mechanical
machines,	this	is	an	analog,	physical	presence.	I’ve	ridden	motorcycles	that	have	had	this	velvety	quality:	the	brake
lever	and	gear	shifter	are	neither	tight	nor	sloppy,	the	throttle	moves	smoothly,	and	the	engine	purrs.

Endings	are	a	time	to	reflect	and	a	prompt	to	move	forward.
(image:	Library	of	Congress)

So	We	Beat	On,	Boats	Against	The	Current

‘Oh,	I	don’t	know.	I	can’t	count	days	in	Rivendell,’	said	Bilbo.	‘But	quite	long,	I	should	think.	We	can	have	many
a	good	talk.	What	about	helping	me	with	my	book,	and	making	a	start	on	the	next?	Have	you	thought	of	an
ending?’

‘Yes,	several,	and	all	are	dark	and	unpleasant,’	said	Frodo.

‘Oh,	that	won’t	do!’	said	Bilbo.	‘Books	ought	to	have	good	endings.	How	would	this	do:	 and	they	all	settled	down
and	lived	together	happily	ever	after?‘

‘It	will	do	well,	if	it	ever	comes	to	that,’	said	Frodo.

‘Ah!’	said	Sam.	‘And	where	will	they	live?	That’s	what	I	often	wonder.’

J.R.R.	Tolkien,	The	Fellowship	of	the	Ring

We	might	laugh	at	this,	but	Sam	is	right:	a	story	can	go	on	forever.	Where	to	cut	it	off	is	a	deliberate	choice	made	by
the	author.	Sometimes	I	feel	like	the	denouement	was	perfectly	executed	(The	Great	Gatsby),	sometimes	I	would	have
liked	a	resolution	much	sooner	(Lost),	and	other	times	I	desired	the	tale	to	go	on	and	on	(Arrested	Development,	which
eventually	was	extended:	be	careful	what	you	wish	for).

The	endings	of	machines	are	also	wide-ranging:	they	can	be	clear-cut,	ambiguous,	planned,	forced	upon	you,	happy,
bittersweet,	sudden,	or	catastrophic.	Sam’s	insight	also	applies	because	those	concluding	moments	can	be	greatly

Beginnings,	Middles,	And	Ends	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 39

http://www.loc.gov/pictures/item/hec2013001144/

influenced	by	your	actions:	repair	and	preventative	maintenance	give	you	a	significant	degree	of	control	over	when
and	how	a	machine	dies.	Closure	of	a	system’s	working	life	can	also	be	temporary,	as	anyone	who	has	prepared	a	boat
or	car	for	long-term	storage	knows.

For	most	people,	picking	the	endpoint	of	a	machine	will	be	an	economic	decision	(for	more,	see	what	I’ve	written
about	the	“repair	or	replace”	dilemma).	Also,	an	ending	for	you	can	be	a	beginning	for	someone	else:	sometimes	the
expiration	of	your	relationship	with	a	machine	just	means	transferring	it	to	someone	else.	Regardless	of	how	a	machine
under	your	care	meets	its	terminus,	it’s	an	invitation	for	reflection	and	a	prompt	to	move	forward.	The	world	keeps	on
changing,	and	your	needs	along	with	it…

References:

Header	image:	Ravenna,	A.,	photographer.	(1962)	Officials	man	the	shovels	with	a	vengeance	at	ground-breaking
ceremony	for	Hunts	Point	produce	market	/	World	Telegram	&	Sun	photo	by	Al	Ravenna.	New	York,	1962.
[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2006686002/.

Beginnings,	Middles,	And	Ends	was	originally	published	May	28,	2015.

Notes:

Beginnings,	Middles,	And	Ends	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 40

http://www.edmunds.com/car-care/how-to-prep-your-car-for-long-term-storage.html
https://artoftroubleshooting.com/2013/06/04/repair-or-replace/
https://www.loc.gov/item/2006686002/

You	Won’t	Guess	The	Hard	Part

Known	problems	come	first,	'cause	I've	already	done	the	work.	I	know	what	the	problem	looks	like,	I	know	how
to	test	for	it,	I	know	how	to	fix	it.

Karl	Kuehn

Recently,	the	lights	in	my	bathroom	stopped	working.	I	would	flip	the	switch	and	the	bulbs	would	glimmer	briefly,	but
they	wouldn’t	stay	on.	What	more	could	a	troubleshooter	ask	for?	Here	it	was—a	project!

I	thought	briefly	of	calling	in	the	cavalry	(i.e.,	a	pro),	but	I’ve	heard	that	it’s	hard	to	get	tradespeople	to	come	out	for
“little	stuff”.	Smaller	jobs	like	these	are	why	many	people	rely	on	those	who	are	“handy”:	those	jack-of-all-trades	that
can	pass	for	an	electrician,	painter,	plumber,	or	carpenter.	Since	I	am	my	own	favorite	handy	type	of	handyperson,	I
decided	to	dive	right	in.

First,	I	watched	a	few	videos	on	how	to	replace	a	light	switch.	Cute	cat	videos	aside,	the	learn-by-seeing	possibilities	of
video	sharing	sites	like	YouTube	make	them	one	of	the	greatest	self-education	platforms	ever	created	(also	notable:
libraries).	Now,	before	I	tell	you	any	more,	I	want	to	share	my	mindset	going	into	this	project.	Thinking	about	repair	is
something	I	like	to	do	(obviously!).	I	may	ruminate	about	fixing	things	more	than	the	average	person,	but	it’s	only
because	my	mind	is	saying:	“Pay	attention!	You	probably	will	end	up	having	to	write	an	article	about	this…”

However,	as	much	as	I’ve	studied	and	theorized	about	fixing	things,	I’m	constantly	humbled	by	reality.	In	particular,
guessing	the	Hard	Part.	You	know	what	I’m	talking	about:	whenever	you	contemplate	a	fix-it	project,	your	mind	starts
spinning.	You	do	your	best	to	conceive	of	a	plan	from	end-to-end,	and	your	thoughts	will	invariably	dwell	on	the	tricky

You	Won’t	Guess	The	Hard	Part	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 41

https://artoftroubleshooting.com/2013/02/21/know-your-limits/
https://en.wikipedia.org/wiki/Handyman
https://artoftroubleshooting.com/table-of-contents/

parts	of	your	imaginary	process.	Maybe	it’s	something	you	don’t	understand,	a	task	you	perceive	as	strenuous,	or
something	that’s	tripped	you	up	in	the	past.	Whatever	the	reason	for	my	consternation,	I’ll	say	to	myself,	“This	is	the
part	of	the	repair	that	will	cause	me	trouble.”

Simply	by	slowing	down,	asking	myself	the	right	questions,	and	thinking	about	what	I’m	about	to	do,	I’ve	saved	myself
countless	times.	It’s	easy	to	rearrange	the	steps	of	a	project	in	your	mind,	but	once	you	start	swinging	a	hammer,	things
get	harder	to	reverse.	Avoiding	trouble,	at	the	speed	of	thought,	pays	big	dividends.	Yet,	dwelling	on	the	imagined
Hard	Part	seems	to	have	consistently	poor	returns.

What	I	perceive	will	be	difficult	isn’t	usually	just	a	little	bit	off,	it’s	often	not	even	in	the	same	ballpark.	In	the	case	of
this	particular	repair,	I	thought	the	most	difficult	parts	of	the	project	were	going	to	be:

Avoiding	the	dangers	of	live	electricity.
Diagnosing	the	problem:	I’m	not	an	electrician,	so	how	am	I	going	to	figure	out	what	is	wrong?	Is	the	problem	the
switch,	the	light	fixture,	the	wiring,	the	bulbs,	etc.?

Yes,	these	two	concerns	did	have	to	be	overcome,	but	it	turns	out	they	were	among	the	 easiest	parts	of	the	project.	The
DIY	tutorials	I	watched	all	started	with	disabling	the	electricity	to	the	circuit	about	to	be	worked	on.	Sure,	it	took	a	little
trial	and	error,	but	it	was	just	a	few	quick	flicks	on	the	electrical	panel	and	I	had	identified	which	circuit	was	powering
the	lights.	Done.

Okay,	but	I	still	had	to	complete	the	diagnosis.	Surely	that	would	be	sticky,	right?	Yet	again,	this	was	easily	overcome
when	I	thought	about	the	electronics	class	I	took	in	high	school.	We	learned	that	a	switch	is	a	very	simple	device:	it
just	breaks	or	completes	a	circuit.	To	figure	out	if	this	particular	switch	was	faulty,	all	I	had	to	do	was	remove	it	from
the	circuit	and	see	if	the	lights	turned	on.	I’m	no	electrician,	but	this	seemed	like	an	obvious	way	to	isolate	the	switch.
It	felt	good	to	so	easily	figure	this	out:	“challenge	met,	competitor	bested,	obstacle	overcome!”

With	the	power	off,	I	began	to	remove	the	switch,	attempting	a	bypass	to	see	if	the	circuit	would	complete	in	its
absence.	But	here’s	where	the	actual	Hard	Part	entered	the	scene:	it	turned	out	that	I	had	a	lot	of	difficulty	removing
the	old	switch.	In	the	videos	I	watched,	the	wires	were	attached	by	screws	on	the	side	of	the	switch.	Installed	in	this
way,	disconnecting	the	switch	was	just	a	matter	of	undoing	the	screws.

On	my	switch,	however,	the	wires	disappeared	into	the	back.	I	pulled	on	them	every	which	way.	I	cycled	through	my
modest	collection	of	pliers,	from	small	to	big,	in	an	attempt	to	improve	my	grip.	I	considered	cutting	the	wires,	but
ultimately	didn’t	because	I	wanted	to	preserve	the	original	wiring.	Stuck	here,	I	cursed	the	drywall	that	looked	on	and
had	witnessed	the	switch’s	original	installation,	quietly	hiding	the	secret	to	this	puzzle.

As	I	got	more	aggressive	wrestling	with	the	wires,	I	sensed	that	I	was	about	to	cross	a	line:	after	all,	 if	you	have	to	force
it,	you’re	probably	doing	it	wrong.	So,	I	decided	to	take	a	break	and	do	more	research.	Why	wouldn’t	the	wires	come
out?	If	you	know	anything	about	common	light	switches,	you	probably	know	the	answer	to	my	dilemma.	There	are	two
ways	to	connect	the	wires:	1)	posts	with	screws	on	the	side	and	2)	gripping	clips	in	the	back.	The	clips	are	designed	to
operate	one-way:	you	slide	the	wire	in	and	the	clips	prevent	the	wire	from	coming	out.	To	get	the	clips	to	relinquish
their	death	grip,	you	have	to	insert	a	screwdriver	into	a	little	hole	and	hit	the	release	mechanism.	Once	I	recognized
this,	the	wires	detached	easily	from	the	switch.

From	there,	the	rest	of	the	project	was	downhill.	I	removed	the	switch,	connected	the	wires	that	used	to	run	through	it,
and	turned	the	power	back	on.	Shazam—the	lights	came	on,	bright	and	clear!	This	test	isolated	the	switch	and	showed
that	it	was	likely	the	culprit.	Therefore,	the	obvious	next	step	was	to	replace	it.	That	meant	a	trip	to	my	new	favorite
place:	the	local	big-box	hardware	store.	Returning	with	a	new	switch,	I	attached	the	wires	through	the	holes	in	the
back,	realizing	why	they	have	two	ways	to	connect	the	switch.	If	you	worked	as	an	electrician	wiring	new
construction,	the	gripping	clips	would	save	you	a	lot	of	time.	They	avoid	the	extra	work	of	bending	wires	around	the
posts	and	screwing	in	the	screws.

The	new	switch	works	great,	and	my	flossing	is	back	to	being	fully	illuminated	(lesson	learned:	don’t	floss	in	the	dark).
But,	the	trouble	I	had	getting	the	wires	out	of	the	switch	got	me	thinking	about	the	Hard	Part.	Why	is	it	so	difficult	for
me	to	predict	what’s	actually	going	to	be	difficult	about	a	repair	project?

Imagining	Risk

You	Won’t	Guess	The	Hard	Part	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 42

https://artoftroubleshooting.com/the-right-questions-a-universal-troubleshooting-guide/
https://www.youtube.com/watch?v=gQWGIzSGtOc
https://artoftroubleshooting.com/2015/05/20/if-you-have-to-force-it-something-is-probably-wrong/
https://en.wikipedia.org/wiki/Big-box_store

Searching	for	an	answer,	I	was	reminded	of	an	interesting	story	I	read	in	 The	Black	Swan.	This	book	is	a	fascinating
meditation	on	improbable	events,	with	author	Nicholas	Taleb	showing	how	we	often	fail	to	properly	conceive	of	rare
but	significant	hazards:	from	misused	mathematical	methods	and	faulty	conceptual	frameworks,	to	our	own	mental
shortcomings	that	make	it	difficult	to	comprehend	the	very	large	and	very	rare.

While	illustrating	the	mismatch	between	perceived	and	actual	risks,	Taleb	recounts	his	visit	to	a	prominent	Las	Vegas
casino.	On	a	tour	of	their	facilities,	he	finds	that	the	“casino’s	risk	management,	aside	from	setting	its	gambling
policies,	was	geared	toward	reducing	the	losses	resulting	from	cheaters.”	Along	these	lines,	they	show	him	an
elaborate	electronic	surveillance	system,	which	made	Taleb	feel	like	he	was	“transported	into	a	James	Bond	movie—I
wondered	if	the	casino	was	an	imitation	of	the	movies	or	if	it	was	the	other	way	around.”

However,	when	cataloguing	and	ranking	the	top	incidents	that	actually	came	close	to	putting	the	casino	out	of
business,	he	finds	that—they	had	nothing	to	do	with	stolen	cash,	roving	bands	of	card	counters,	or	shady	dealers
pocketing	chips!	For	example,	one	of	the	casino’s	star	entertainers	got	bit	by	a	tiger	during	a	magic	show	(apparently,
this	alone	was	about	a	$100	million	loss!).	Then	there	was	an	injured	contractor,	so	offended	by	a	settlement	offer,	that
he	tried	to	blow	up	the	casino	(luckily,	the	attempt	was	thwarted).	And,	this	doozy:

…casinos	must	file	a	special	form	with	the	Internal	Revenue	Service	documenting	a	gambler’s	profit	if	it	exceeds	a
given	amount.	The	employee	who	was	supposed	to	mail	the	forms	hid	them,	instead,	for	completely
unexplainable	reasons,	in	boxes	under	his	desk.	This	went	on	for	years	without	anyone	noticing	that	something
was	wrong.	The	employee’s	refraining	from	sending	the	documents	was	truly	impossible	to	predict.	Tax	violations
(and	negligence)	being	serious	offences,	the	casino	faced	the	near	loss	of	a	gambling	license	or	the	onerous
financial	costs	of	a	suspension.	Clearly	they	ended	up	paying	a	monstrous	fine	(an	undisclosed	amount),	which
was	the	luckiest	way	out	of	the	problem.

Nicholas	Taleb,	The	Black	Swan	1

Average	Fears

When	it	comes	to	guessing	the	Hard	Part	while	troubleshooting,	I’m	like	that	casino	risk	management	team.	My	fears
are	loosely	based	on	the	small	sliver	of	reality	that	I	know	and	think	I	can	control,	using	forms	that	are	familiar.	In	this
sense,	they’re	often	very	pedestrian.	Back	to	the	light	switch	project:	a	 truly	imaginative	roadblock	to	the	repair	would
rightly	be	dismissed	as	unrealistic	by	my	mind	and	not	considered	(A	nearby	black	hole	causing	a	disturbance	in	the
space-time	continuum?	An	evasive	and	invasive	Smurf	hiding	in	the	walls?).	Examined	closer,	the	things	I	thought	were
going	to	be	hard	about	replacing	the	light	switch	were	quite	tame.	After	all,	I	can	flick	a	switch	to	cut	the	power	and
use	logic	to	isolate	and	make	a	diagnosis.	I’ve	done	both	of	these	things	countless	times!

Attempting	a	repair	for	the	first	time	is	stepping	into	something	new,	so	it’s	to	be	expected	that	the	Hard	Parts	from
your	past	are	not	likely	to	be	the	Hard	Parts	of	your	future.	This	is	true	because	past	troubles	are	familiar;	you’ve
already	either	overcome	or	avoided	them.	This	prior	experience	and	knowledge	automatically	makes	them	less	potent.

Even	if	a	repair	is	routine,	you	probably	still	won’t	be	able	to	guess	the	Hard	Part,	should	it	arise.	A	seasoned
electrician	would	have	laughed	at	my	light	switch	repair	problem:	a	person	with	those	skills	would	obviously	know
how	to	release	the	clips	holding	in	the	wire.	This	simple	repair	would	have	been	a	5-minute	distraction	for	them.	They
might	be	able	to	do	a	thousand	with	no	incidents…

Compared	to	me,	a	professional	electrician	has	a	much	more	detailed	map	of	how	a	light	switch	replacement	should
go.	But	even	though	their	mental	model	is	larger	and	more	complex,	filled	with	the	rich	details	of	their	training	and
experience,	it’s	still	just	as	finite	as	mine.	That	means	that	when	the	Hard	Part	finally	arrives	for	them,	it	too	will	be
outside	their	prior	experience	and	conception.	And,	just	like	me,	they	will	be	surprised.

You	Won’t	Guess	The	Hard	Part	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 43

A	never-ending	process:	the	Hard	Part	lies	outside	your	experience	and	knowledge.	Every	time	you	encounter
an	unseen	difficulty,	your	circle	of	awarness	expands	to	include	it.	But,	the	next	Hard	Part	will	be	outside	of

that	enlarged	circle,	etc.
(image:	©	Jason	Maxham)

Your	Imagination	Needs	Help

The	Hard	Part	lurks	outside	the	bubble	of	your	experience	and	what	you	consider	possible.	It’s	therefore	hard	to	guess,
so	you’re	going	to	need	help!	This	is	especially	true	if	you’re	working	on	something	dangerous	(like	electricity),	where
unforgiving	Hard	Parts	can	damage,	maim,	or	kill.

Manuals,	troubleshooting	guides,	and	“how-to”	tutorials	are	typically	filled	with	references	to	the	Hard	Part.	This	is
also	the	kind	of	thing	that	seasoned	repair	veterans	are	quick	to	point	out,	if	you	bother	to	ask	them	(“You’re	doing
what?!	You	better	watch	out	for…”).	Between	what	is	written	down	and	what	is	in	the	minds	of	the	more	experienced,
hopefully	it’s	enough	to	keep	you	safe.

You	Won’t	Guess	The	Hard	Part	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 44

Yet	there	is	no	end	to	the	process:	acquiring	more	knowledge	simply	pushes	the	Hard	Part	further	out	into	the
unknown	unknowns.	That	means	there	will	always	be	accidents	and	unseen	difficulties	involving	repair.	Cultivating	a
curiosity	about	the	wider	world	gives	you	a	chance	of	avoiding	these	troubles,	but	be	glad	you	can’t	extinguish	all	the
mysteries.	As	long	as	the	Hard	Part	doesn’t	harm	you,	these	unexpected	moments	of	discovery	are	part	of	the	glorious
wonder	of	being	alive.

References:

Header	image:	Wilson,	William	A.,	Photographer	(1978).	Bulldozer	Freeing	Tractor	Stuck	in	Mud.	May,	1978.
[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/ncr000652/.
1	Taleb,	Nassim	Nicholas	(2007),	The	Black	Swan:	The	Impact	of	the	Highly	Improbable ,	Random	House.

You	Won’t	Guess	The	Hard	Part	was	originally	published	October	18,	2020.

Notes:

You	Won’t	Guess	The	Hard	Part	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 45

https://en.wikipedia.org/wiki/There_are_known_knowns
https://artoftroubleshooting.com/category/curiosity/
https://www.loc.gov/item/ncr000652/

Is	Troubleshooting	A	Science?

To	Gillet,	it	was	all	sort	of	an	experiment,	and	“as	it	turns	out	I	had	just	enough	to	do	it.”	The	results	of	the
experiment	are	still	inconclusive;	Gillet	guesses	that	if	he	attempted	the	crossing	in	the	same	manner	ten	times,
that	he	would	die	on	five	of	the	attempts.

Dave	Shively,	The	Pacific	Alone

When	I	was	a	guest	on	the	I	Love	Data	Centers	Podcast ,	host	Sean	Tario	broached	the	topic	of	methodology,	asking	me
about	the	“art”	in	The	Art	Of	Troubleshooting.	He	thought	the	methodology	of	fixing	things	I	laid	out	in	 my	writing
seemed	to	be	more	formal	and	rigid	than	what	was	implied	in	the	seemingly	looser	term	of	“art.”	I	replied	that	repair
can	be	very	rigorous	and	structured.	Not	everything	can	be	fixed	with	a	 simple	reboot,	so	there	have	been	times	where
I’ve	meticulously	collected	data,	formed	&	tested	hypotheses,	and	attacked	a	difficult	problem	with	a	disciplined
regimen	worthy	of	a	Rocky	montage.

I	also	brought	up	the	more	human	aspects	of	repair,	saying	“there’s	also	a	part	of	troubleshooting	that’s	more	about
experience	and	intuition…”	(54:07).	Those	processes	might	sound	fuzzier	than	they	actually	are:	while	hardened	repair
veterans	seem	to	be	guided	by	a	divine	auto-pilot,	it’s	actually	just	the	deep	internalization	of	their	unique	fix-it
education.	Over	time,	all	the	victories	and	setbacks,	large	and	small,	are	eventually	encoded	into	our	unconscious
habits.

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 46

https://www.amazon.com/Pacific-Alone-Untold-Kayakings-Boldest/dp/149302681X
https://artoftroubleshooting.com/2017/06/30/listen-to-my-interview-on-the-i-love-data-centers-podcast/
https://artoftroubleshooting.com/table-of-contents/
https://artoftroubleshooting.com/2011/12/21/defaults-and-reboots/
https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
https://www.youtube.com/watch?v=_YYmfM2TfUA

During	that	interview,	I	used	the	S-word.	Of	course,	I’m	talking	about	 science	(what	did	you	think	I	meant?).	Since
then,	I’ve	been	thinking	about	the	ways	of	the	Troubleshooter;	after	all,	method	is	very	important	to	understanding	how
a	discipline	works.	When	I	give	advice	about	repair,	I	try	to	keep	reason	front	and	center.	However,	can	we	go	further
and	say	that	troubleshooting	is	a	“science”	or	that	your	approach	to	fixing	things	should	be	“scientific”?

Boldly	Going	Into	The	Unknown

Most	people	would	rather	not	peer	deep	into	the	soul	of	a	broken	machine,	meditating	on	its	 metaphysical	qualities.
Instead,	they’d	prefer	to	take	the	easy	way	out.	If	you	could	instantly	tell	someone	exactly	what’s	causing	a	malfunction
and	how	to	fix	it,	surely	they’d	like	that.	After	all,	the	quicker	someone	can	get	on	with	the	rest	of	their	life,	the	better.

Troubleshooting,	in	this	abbreviated	version,	can	simply	mean	following	the	prompt	of	a	machine-generated
suggestion.	Acting	on	a	“refill	paper	tray”	alert	or	a	“low	battery”	warning	light	are	low-effort	paths	that	reduce	fixing	to
the	simplicity	of	being	aware	and	following	instructions.	This	relentless	march	towards	making	fault-finding	an
automated	process	is	vastly	preferred	by	consumers,	who	acquired	a	product	for	the	benefits	it	confers	on	their	lives,
not	for	the	joy	of	repair.

What	happens	when	the	most	common	fix-it	problems	become	readily	known	and	easily	solved?	I’ll	tell	you:	what’s
left	will	be	the	frustrating	and	interesting	troubleshooting	conundrums	that	will	lead	you	into	the	unknown.	Out	on	this
ledge	of	uncertainty,	the	best	course	of	action	is	at	best	a	contested	matter	of	opinion.	Luckily,	this	is	what	makes	life
interesting:	if	it	all	was	settled	and	known,	there	would	be	nothing	new	to	learn	or	figure	out.	When	there’s	no	well-
worn	shop	manual	or	checklist	to	follow,	we	grasp	out	in	the	darkness	for	a	framework	to	give	us	structure,	a	general
direction	to	start	heading	towards.	At	these	moments	of	uncertainty,	when	we	must	choose	from	the	myriad	paths	in
front	of	us,	we	tend	to	fall	back	on	the	human	virtues	of	the	art	of	repair,	like	experience	and	intuition.

That	might	be	fine	for	the	best	among	us,	but	what	about	those	with	limited	experience?	What	happens	if	your	intuition
is	weak?	I’ve	tried	to	supplement	this	gap	by	becoming	a	collector	of	the	best	troubleshooting	strategies,	which	are
general	enough	to	insert	your	problem	into,	yet	specific	enough	to	nudge	you	in	a	direction	that	has	worked	for	other
fixers.	However,	maybe	there’s	a	better	way	to	repair,	one	based	on	science	instead?

Science,	Abused	&	Praised

In	many	of	the	contentious	debates	in	the	public	sphere,	you’ll	notice	there’s	often	a	battle	over	who	will	claim	the
mantle	of	scientific	approval.	From	nutrition	to	climate	change	to	pandemics,	there	are	points	to	be	scored	if	you	can
convince	people	that	the	science	is	“settled”	or	“on	your	side.”

Unfortunately,	for	those	advocates	whose	interest	in	science	is	merely	a	tool	of	persuasion,	support	for	it	can	be	weak
and	easily	crumble	in	the	wake	of	a	contradicting	discovery.	When	the	ends	(political	or	social	goals)	are	considered
more	important	than	the	means	(science),	the	means	are	easily	jettisoned.	Cherry	picking—emphasizing	facts	that
benefit	your	cause—is	common	too.	Please	leave	that	tasty	harvesting	to	the	orchard.

It’s	easy	to	see	why	there	is	a	fight	over	who	can	claim	scientific	respectability.	Science	is	generally	well-regarded	in
the	public’s	mind;	we	associate	human	progress	with	the	rise	of	science.	In	an	era	of	spin,	propaganda,	clever
omissions	and	paid	advocacy	(both	hidden	and	overt),	it’s	advantageous	to	be	associated	with	an	impartial	and
verifiable	truth.	Saying	that	out	loud,	I’m	getting	excited	and	want	in	too!	It	seems	we	should	at	least	consider	that
troubleshooting	could	be	scientific…

But	First,	What	Is	It?

Let’s	lay	some	groundwork.	The	dictionary	has	a	few	different	definitions	of	“science,”	but	for	the	purposes	of	this
article,	I	want	to	focus	on	the	meaning	that	science	is	a	body	of	knowledge	acquired	through	the	scientific	method.
From	the	big	book	of	words:

science	noun

3a:	knowledge	or	a	system	of	knowledge	covering	general	truths	or	the	operation	of	general	laws	especially	as
obtained	and	tested	through	scientific	method

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 47

https://en.wikipedia.org/wiki/Zen_and_the_Art_of_Motorcycle_Maintenance
https://artoftroubleshooting.com/2013/04/16/be-present/
https://artoftroubleshooting.com/strategies/
https://en.wikipedia.org/wiki/Cherry_picking

Merriam	Webster

If	people	ask	“Can	we	use	science	to	figure	this	out?”	or	“What	does	the	science	say?”,	this	definition	is	the	one	that	is
implied.	When	you	say	“science”	to	the	average	person,	it	probably	conjures	up	images	of	chalkboards,	test	tubes,	rats
in	cages,	and	people	in	white	lab	coats.	That	is,	people	using	the	scientific	method	to	run	experiments,	and	drawing
conclusions	from	them.

That	may	seem	obvious,	but	there	are	broader	meanings	of	the	word	“science”	that	include	much	more	expansive
notions	like	a	“state	of	knowing,”	or	learning	around	an	“object	of	study.”	Especially	when	it	comes	to	debating	who
has	“the	science	on	their	side,”	I	think	what’s	usually	meant	is	that	a	conclusion	has	been	arrived	at	using	the	scientific
method.	But	can	troubleshooters	use	the	same	tools	as	scientists?

Sidestepping	universal	solutions:	as	a	Troubleshooter,	you	don’t	need	to	fix	everything,	just	the	broken	thing.
(image:	Nate	Bell	/	Unsplash)

Troubleshooting	Heads	One	Way

Repair	projects	proceed	toward	the	specific.	What	I	mean	is	that	troubleshooting	is	a	relentless	pursuit	to	learn	the
unique	set	of	facts	surrounding	a	particular	problem.	Behind	a	broad	problem	description	like	a	“power	outage,”
“computer	crash,”	or	“engine	failure,”	there	can	lie	an	infinite	number	of	causes	and	remedies.	This	means	that
actually	repairing	a	particular	instance	of	these	maladies	requires	an	understanding	of	the	situation’s	 specific
underlying	cause.

When	troubleshooting,	initial	problem	descriptions	tend	to	focus	on	symptoms	and	an	end	result	that	is	being
thwarted.	The	person	experiencing	a	malfunction	is	typically	prevented	from	accomplishing	something:	their	car	won’t

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 48

https://www.merriam-webster.com/dictionary/science
https://www.merriam-webster.com/dictionary/science
https://unsplash.com/photos/Lza_12_verw
https://artoftroubleshooting.com/2011/10/04/skillful-questioning-part-1/

start	and	so	they	can’t	drive	to	the	store,	their	oven	won’t	get	hot	and	so	dinner	is	delayed,	etc.	But	for	any	given
symptom,	there	are	an	endless	number	of	possible	causes.	That’s	because	there	are	only	a	relatively	small	number	of
possibilities	for	a	machine’s	parts	to	be	correctly	configured,	while	there	are	an	infinite	number	of	ways	for	it	to	be
broken.	Think	of	how	many	different	possibilities	could	be	behind	a	car	not	starting:	a	dead	battery,	empty	fuel	tank,
faulty	wiring,	blown	fuses,	broken	belts,	etc.

You	can	see	we	already	have	a	full	plate	here:	we	don’t	need	to	add	any	more	to	the	endless	possibilities	lurking
behind	a	group	of	symptoms.	However,	there’s	an	added	problem	in	simply	communicating	a	malfunction	to	others:
how	do	you	begin	to	describe	what	you	clearly	don’t	understand?	We	naturally	grasp	for	a	way	to	relate	the	problem	to
something	we	and	others	might	know,	often	trying	to	place	the	problem	in	a	known	category	(“power	outage,”
“computer	crash,”	“engine	failure,”	etc.).	Using	these	problem	groupings	may	get	recognition	from	our	fellow	humans
and	give	us	some	comfort	that	we’re	headed	in	the	right	direction,	but	they’re	still	abstractions	which	will	need	to	be
turned	into	specifics.

Whatever	the	source	of	the	haziness,	the	best	fixers	quickly	recognize	and	drill	down	on	these	generalizations,	working
to	discover	the	key	details	so	that	a	solution	can	be	found.	This	is	inevitably	a	narrowing:	you	don’t	need	to	fix	all
machines,	you	just	need	to	fix	 this	machine.	This	toaster	is	burning	the	toast.	This	computer	program	that	calculates	the
payroll	is	crashing.	This	nuclear	reactor	is	too	hot.	The	broken	system,	screwed	up	in	its	own	unique	way,	is	an
obstacle	that	impedes	a	specific	goal:	making	perfect	toast,	paying	employees	on	time,	generating	electricity,	etc.

While	completing	a	particular	repair	is	a	drive	toward	specificity,	how	you	get	there	is	not	always	a	straight	line.
Troubleshooting	requires	both	the	use	of	induction	and	deduction,	a	clever	movement	between	the	general	and	the
specific.	You	may	start	with	some	bare	facts,	like	the	symptoms	of	a	car	not	starting.	From	there,	you	can	“step	up”,
grouping	and	attempting	to	fit	them	into	a	broader	form,	like	an	“electrical	problem”.	Doing	so	may	put	familiar	tools
in	your	hand	and	nudge	your	feet	down	a	known	path	(e.g.,	getting	out	your	multimeter,	testing	continuity,	checking
the	battery’s	charge,	looking	for	blown	fuses,	etc).

However,	if	you	aren’t	successful,	you’ll	have	to	step	“down”	again	and	look	for	another	model	to	guide	your	actions
(for	examples	of	effective	mental	models	for	repair,	see	the	numerous	strategies	I’ve	written	about).	Theory	leads	right
into	practice:	you	might	have	reams	of	possibilities	knocking	around	in	your	noggin,	but	Troubleshooters	aren’t
rewarded	for	fixing	things	in	their	heads.	Repair	is	an	applied	discipline,	so	abstractions	are	useful	only	to	the	extent
that	they	rectify	the	malfunction	at	hand.	“Does	the	machine	work	again?”	provides	a	useful	check	to	those	who	might
favor	theory	over	practice.

Science	Goes	The	Other	Direction

The	output	of	science	seems	to	run	in	the	opposite	direction,	from	the	specific	to	the	general.	The	most	revered
scientists	are	those	that	discover	wide-ranging	concepts	that	implicate	huge	swaths	of	reality.	Think	of	Einstein’s	theory
of	special	relativity	or	Newton’s	laws	of	motion:	these	are	attempts	to	describe	the	workings	of	the	entire	universe.
That’s	as	big	as	it	gets!

To	make	these	broad	generalizations,	scientists	have	to	be	very	careful	about	the	particulars	of	the	things	they	study.
Observing	just	one	forest,	one	human,	or	one	planet	may	not	be	enough	to	confidently	say	something	about	all	forests,
all	humans,	or	all	planets.	That’s	because	just	a	single	counterexample	can	bring	down	the	whole	edifice	of	a	universal
theory.	If	all	swans	are	supposedly	white,	then	you’ve	got	some	explaining	to	do	if	you	encounter	a	black	one.

The	underlying	goal	for	most	scientific	experiments	is	to	be	able	to	take	the	specifics	of	a	group	of	subjects	and	project
them	onto	the	larger	world.	Whether	eggs	are	a	good	or	bad	dietary	choice	for	just	one	person	is	of	limited	use	to	the
rest	of	humanity	(sorry,	Bob).	People	want	to	know	if	eggs	are	good	or	bad	for	women.	Or	men	(you’re	welcome,	Bob).
Or	senior	citizens	(how	old	are	you,	Bob?).	Or	babies.	Or	high-performance	athletes	(time	to	hit	the	gym,	Bob).

Scientists	are	an	observant	bunch	who	always	think	that	they	are	on	the	brink	of	a	REALLY.	BIG.	DISCOVERY.	Given
that	they	are	watchful	and	motivated,	they	are	vulnerable	to	the	dangers	of	heroically	extrapolating	from	what	they	see.
Imagine	if	science	was	simply	a	matter	of	reporting	what	you	saw,	with	your	observations	immediately	generalize-able
for	all	things	and	all	times.	Science	would	then	just	be	a	matter	of	reporting,	like	journalism	(well,	like	good
journalism!).

Firmly	In	Control,	From	A→B

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 49

https://artoftroubleshooting.com/2012/08/31/lets-be-reasonable/
https://en.wikipedia.org/wiki/Multimeter
https://artoftroubleshooting.com/strategies/
https://en.wikipedia.org/wiki/Counterexample
https://en.wikipedia.org/wiki/The_Black_Swan:_The_Impact_of_the_Highly_Improbable

Scientific	protocols	have	safeguards	to	prevent	hasty	conclusions.	Front	and	center	are	measures	called	 “controls”	that
encourage	scientific	investigators	to	take	a	skeptical	approach	to	their	hunches	that	“A	causes	B”.	Merely	observing	a
link	between	a	cause	and	its	supposed	effect	is	only	the	beginning.	If	your	experimental	hypothesis	posits	that	A
inevitably	leads	to	B,	you	must	also	verify	that	the	absence	of	A	will	not	also	cause	B.

For	example,	if	you	want	to	see	the	effects	of	a	new	drug,	you	might	give	the	drug	to	a	group	of	ill	rats	and	note	the
effect.	However,	you	also	need	to	not	give	the	drug	to	an	additional	group	of	similarly	ill	rats	(the	control	group)	and
observe	the	results.	Only	by	comparing	the	two	groups	can	you	know	for	sure	that	the	drug	alone	is	the	source	of	the
effects	you	observe.	If	both	groups	of	rats	recover	from	their	illnesses	at	the	same	rate,	then	the	drug’s	role	as	the	agent
of	change	is	in	severe	doubt.	Controls	establish	a	baseline,	a	benchmark	for	changes	to	be	measured	against.

The	use	of	experimental	controls	is	a	cornerstone	of	the	scientific	method,	the	kind	of	thing	you	might	learn	in	an
elementary	school	lesson	and	then	promptly	take	for	granted	the	rest	of	your	life.	Sure,	there	are	other	bulwarks	to
prevent	the	false	conclusions	of	scientists	from	bothering	us:	there’s	always	peer	review	and	the	possibility	of
duplicating	experimental	results	in	another	lab.	However,	I	always	thought	it	was	neat	that	skepticism	is	built-in	to	the
discipline	of	science,	always	encouraging	investigators	to	be	circumspect.	Designing	a	controlled	experiment	at	least
prompts	the	thought,	“I	guess	there’s	a	possibility	that	A	might	not	cause	B…”

Who’s	in	control	of	this	experiment?
(image:	Marion	Post	Wolcott	/	Library	of	Congress)

Your	Life	Is	Out	of	Control

Before	we	draw	the	connection	to	troubleshooting,	I	want	to	show	the	difficulty	of	applying	the	scientific	method	to	a
common	human	problem:	choosing	how	to	act	in	the	face	of	uncertainty	and	scarcity.	In	your	endeavors	as	an
individual	human	being,	you	are	singularly	involved	in	an	amazing	uncontrolled	experiment.	Take	a	conundrum
young	people	face:	selecting	a	profession	to	pursue.	Let’s	say	you’re	thinking	about	becoming	a	lawyer	and	wondering
if	that	would	be	good	for	you.	Can	science	answer	this	question?	What	would	it	take?

I	guess	we’d	start	by	stating	the	question	a	bit	more	scientifically:	“Will	becoming	a	lawyer	achieve	X	for	me?”	As	for	X,
you’re	free	to	pick	any	measurable	metric	you	want:	health,	wealth,	fame,	defendants	defended,	cases	won,	homes
bought,	children	begot,	spouses	divorced,	etc.	For	our	experiment,	it	would	start	easily	enough:	we’d	follow	your	legal
career	from	beginning	to	end,	when	hopefully	you’d	retire	as	Senior	Partner	from	the	Big	Firm	and	get	your	gold	watch
(or	is	it	a	golden	gavel?).	We’d	then	assess	what	happened:	did	becoming	a	lawyer	cause	the	desired	outcome?

This	longitudinal	study	of	your	life	may	be	interesting	and	the	tracked	parameters	could	be	completely	objective,	but	it
isn’t	science.	Not	yet,	at	least.	We	also	want	to	know:	did	choosing	to	become	a	lawyer,	a	choice	you	had	among

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 50

https://en.wikipedia.org/wiki/Scientific_control
https://www.loc.gov/resource/fsa.8a43455/

many	professions,	solely	cause	the	various	outcomes,	good	or	bad?	That’s	because,	when	deciding	to	become	a
lawyer,	you’re	implicitly	turning	down	other	professions—which	may	be	even	better	for	you!	The	problem	with	just
observing	your	career	as	a	lawyer	is	that	these	alternatives	are	not	being	examined	and	compared.

Establishing	causation	from	a	single	observation	is	problematic,	because	no	variables	are	being	manipulated.	Merely
noting	the	outcome	of	a	process,	without	isolating	and	changing	the	inputs,	invites	speculation	and	disagreement	on
what	would	happen	if	you	did—change	the	inputs!	Luckily,	isolating	and	measuring	the	effect	from	a	suspected	cause
are	exactly	what	a	well-designed	experiment	tries	to	achieve.	So,	what	would	it	take	to	get	scientific	with	our	career
dilemma?	Now,	we’re	talking!	Let’s	add	some	controls	and	play	with	some	variables:	we	need	to	have	you	not	become
a	lawyer	(i.e.,	choose	another	career)	and	track	those	paths	as	well.	In	short,	we	want	to	compare	the	lawyer	you	with
the	not-lawyer	you.

Our	modest	plan:	we’d	start	by	cloning	you.	Let’s	take	1,000	of	yourself	and	send	yous	on	your	merry	way	to	becoming
a	lawyer.	We	would	obviously	need	to	send	you	to	different	law	schools,	as	it	would	be	very	awkward	to	run	into
yourself	around	campus.	For	1,000	more	clones,	we’d	choose	a	variety	of	alternative	careers:	hippie	jam	band	festival
organizer,	plumber,	repo	man,	museum	curator,	pet	detective,	etc.	Oh,	and	add	another	1,000	clones	to	 sit	home	and
slack	off,	just	in	case	doing	nothing	somehow	leads	to	life	satisfaction.

Over	the	years,	we’d	periodically	note	some	key	statistics	for	all	of	the	various	yous:	height,	weight,	marital	status,
offspring,	annual	earnings,	drug	and	alcohol	use,	etc.	Finally,	at	the	end	of	40	years,	we’d	analyze	all	the	data.	Given
that	we’re	going	to	send	you	back	in	a	time	machine,	we	would	have	the	luxury	of	waiting	until	the	very	end	to
analyze	all	the	results	from	all	your	clones	(it’s	going	to	take	a	while	to	interview	them).	Plus,	you’d	be	free	to	change
your	mind,	at	any	point,	on	what	it	means	to	have	a	“good	career”:	along	the	way,	we	could	easily	add	data	points	to
collect	and	questions	to	ask	in	our	“exit”	interviews.	Great!	Now,	hop	in,	set	the	dial	to	the	year	you	graduated	from
high	school,	accelerate	to	88	miles	per	hour,	and	nudge	your	former	self	to	make	the	best	decision.

This	all	sounds	like	a	bad	sci-fi	comedy,	but	the	reason	is	that	we’ve	chosen	the	wrong	tool:	the	scientific	method
seems	unsuitable	for	this	particular	dilemma.	You	have	just	a	single	life	to	live	and	this	singular	nature	is	not	well-
suited	to	simultaneously	testing	multiple	career	paths.	You	can’t	ask,	“Does	science	say	becoming	a	lawyer	is	the	best
option	for	me?”	and	then	forget	to	run	a	controlled	experiment.	That’s	a	bush-league	move:	you’d	have	to	hand	over
your	white	lab	coat	if	you	made	such	an	amateurish	mistake.	Minus	controls,	we	can’t	know	the	most	basic	of
counterfactuals;	therefore,	science	will	have	difficulty	saying	that	becoming	a	lawyer	was	uniquely	the	cause	of
anything,	good	or	bad,	in	your	life.

Since	we	don’t	have	time	machines,	another	huge	problem	with	“living	scientifically”	are	the	omnipresent	 opportunity
costs	of	simply	being	alive.	You	can’t	go	backwards	in	time	for	a	do-over,	so	every	moment	expires	all	the	possibilities
of	what	could	have	been	if	you	had	taken	a	different	path.	Your	teenage	self	that’s	seeking	career	guidance,	needs	it
now.	Knowledge	gained	through	scientific	experimentation	may	help	you	in	the	future,	but	it	can’t	be	retroactively
applied	to	the	past.	The	creation	of	scientific	insights	has	a	price:	setting	up	an	experiment	takes	resources	and	time,	a
cost	which	you	may	be	unwilling	to	bear.	Lastly,	goal-oriented	actors	(like	humans)	constantly	adjust	to	incentives	and
feedback.	An	inanimate	object,	like	a	rock,	doesn’t	respond	to	its	environment	like	we	do	(pro	tip	for	scientists:	check
out	those	nifty	rocks—at	least	they’ll	do	what	you	tell	’em).	If	you	found	out	that	you	hated	practicing	law,	you
wouldn’t	suffer	through	a	40-year	career	as	a	lawyer—just	to	complete	an	“experiment”!

Of	course,	that	doesn’t	mean	that	we	just	throw	up	our	hands;	the	question	of	a	career	path	can	be	answered	in	many
different	reasonable	ways	that	are	feasible	and	affordable	(and	don’t	require	a	time	machine).	You	can	read	biographies
of	famous	lawyers,	interview	practicing	attorneys,	get	an	internship	at	a	law	firm,	attend	a	trial	at	your	local
courthouse,	and	tour	law	schools.	You	can	research	starting	salaries,	analyze	job	placement	rates	for	various	law
schools,	join	a	moot	court	team,	and	talk	to	recent	law	school	graduates.	You	can	take	a	test	that	matches	your
personality	type	with	the	most	suitable	occupations,	get	the	opinion	of	an	industrial	psychologist,	and	ask	your	friends
and	family	if	they	think	it’s	a	good	fit.	And,	if	being	a	lawyer	doesn’t	work	out,	you	can	always	choose	to	pursue
something	else.	You	can	do	all	of	this,	but	it’s	not	directly	applying	the	scientific	method	to	your	question.

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 51

https://www.youtube.com/watch?v=sBaPI2AKu2g
https://www.youtube.com/watch?v=1a8rsr0RzZY
https://www.youtube.com/watch?v=3nPEM5d-MtQ
https://www.youtube.com/watch?v=cXcH0f2B2vA
https://www.youtube.com/watch?v=evzBwXvqEl4
https://www.youtube.com/watch?v=HWoW-vX4HT8
https://dictionary.cambridge.org/dictionary/english/counterfactual
https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/
https://en.wikipedia.org/wiki/Moot_court

Let’s	see,	we	could	try	this	spare.	Or…conduct	a	double-blind	randomized	controlled	experiment,	then	wait
for	our	paper	to	be	peer	reviewed	and	for	the	results	to	be	replicated	by	labs	around	the	world.	Your	call.

(image:	John	Collier,	Jr.	/	Library	of	Congress)

The	Clock	Is	Ticking

When	it	comes	to	repair	and	science,	you’ve	probably	already	drawn	the	parallels	with	our	confused	career-seeker.	For
starters,	troubleshooting	problems	are	usually	singular	in	nature.	You	might	have	one	broken	car,	or	one	spewing
printer,	or	one	errant	computer;	it’s	rare	to	have	100	broken	cars,	100	spewing	printers,	or	100	errant	computers	(the
kind	of	numbers	needed	to	run	a	controlled	experiment	and	get	a	statistically	significant	result).	Our	resources	are	finite
and	we	employ	machines	for	our	purposeful	ends,	so	it’s	rare	to	have	copious	extras	on	hand	to	test	counterfactuals
and	provide	adequate	experimental	controls.	Also,	just	like	our	aspiring	attorney,	we	have	time	constraints:	we	need
things	fixed	now.	That	broken	machine	is	preventing	you	from	accomplishing	something	important,	so	the	favored
solutions	will	be	expedient	(i.e.,	the	opposite	of	the	slow,	careful	introspection	needed	for	scientific	exactness).

I	do	want	to	point	out	that	there	are	scenarios	where	repair	can	successfully	interact	with	the	scientific	method.	This
typically	happens	in	large-scale	industrial	situations,	where	you’re	dealing	with	masses	of	identical	components.	For
example,	imagine	that	you	run	a	data	center,	with	thousands	of	computers	containing	many	more	thousands	of	hard
disk	drives.	You	buy	in	bulk,	so	you	have	many	identical	drives	of	the	exact	same	make	and	model	being	used	in	these
servers.	Plus,	the	sheer	size	of	your	deployment	makes	it	economical	for	you	to	attempt	and	track	repairs	in-house.	This
is	a	great	setup	for	a	rolling,	controlled	experiment!

That’s	because	a	data	center	with	thousands	of	hard	drives	will	have	failures— constantly.	I	managed	a	server	farm	that
would	be	considered	modest	by	today’s	standards,	and	not	a	week	would	pass	without	at	least	one	disk	giving	up	the
ghost.	You	can	see	how	this	setup	would	be	ideal	to	practice	science:	with	each	new	failure,	you	could	experiment
with	various	types	of	repair	(replace	the	platter?	controller?	connector?	firmware?).	If	you	were	tracking	operational	data

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 52

https://www.loc.gov/resource/fsa.8d26153/
https://www.backblaze.com/blog/how-long-do-disk-drives-last/
https://www.youtube.com/watch?v=sBaPI2AKu2g

on	your	drives,	you	could	begin	to	compare	the	effectiveness	of	these	different	kinds	of	repairs	as	you	put	the	drives
back	in	service	and	monitored	their	health.	Finally,	that	pile	of	broken	hard	drives	in	the	corner—there’s	your	control
group!

Beyond	end	users,	manufacturers	have	both	the	incentive	and	scale	to	pull	off	scientific	troubleshooting	studies.	Again,
if	you’re	dealing	with	masses	of	duplicates,	you	have	an	ideal	situation	for	the	segmentation	needed	to	test	alternative
repair	theories.	Before	a	new	product	is	born,	the	prototyping	and	testing	phase	offers	ample	opportunities	to	track
breakdowns	and	the	efficacy	of	various	responses	to	them.	When	a	product	is	released	“into	the	wild”,	real	world
usage	by	customers	offers	even	more	chances	to	collect	and	analyze	failure	data	in	a	scientific	way.	Automobile
makers	are	a	great	example	of	this	setup:	there	might	be	millions	of	a	particular	model	on	the	road,	and	a	network	of
dealership	service	departments	collecting	data	could	be	your	“lab	notebook”.	Just	like	a	control	group	in	an
experiment,	the	identical	nature	of	mass	produced	goods	provides	a	clear	lens	to	observe	the	result	of	various	changes:
over	time,	the	completely	homogeneous	group	of	test	subjects	can	highlight	the	effectiveness	of	different	ways	of
dealing	with	a	failure.

Another	field	that	is	conducive	to	a	quasi-scientific	troubleshooting	approach	is	software.	When	I	was	writing	code,
there	were	many	opportunities	to	use	controls,	just	like	in	a	real	laboratory.	I	could	take	a	malfunctioning	program,
attempt	to	fix	it	by	making	a	single	modification	(note:	the	“change	just	one	thing	at	a	time”	troubleshooting	principle
is	straight	out	of	the	science	playbook),	and	then	test	it	against	prior	versions.	Running	these	tests	in	the	same
environment	(hardware	&	operating	system	version)	provided	consistency	to	the	results;	this	would	be	analogous	to
making	sure	a	lab	was	cleaned	and	set	up	the	exact	same	way	for	each	round	of	an	experiment.	Since	I	worked	on	a
computer	cluster,	running	thousands	of	tests	simultaneously	was	both	fast	and	easy.	This	way	of	testing	software	has	all
the	elements	of	a	controlled	experiment:	manipulating	a	single	variable	(making	a	change	to	the	program),	gauging	its
effects	(examining	the	altered	program’s	output),	then	comparing	the	results	to	the	control	group	(noting	differences	to
prior	versions	of	the	program,	without	the	modification).	This	methodology	was	great	at	isolating	the	consequences	of
a	particular	change—exactly	what	scientific	experiments	aim	for!

If	you	are	fortunate	to	be	working	on	a	system	that	has	genuine	science-based	troubleshooting	data	available,	please
take	full	advantage.	But,	I	suspect	that	this	won’t	be	the	case	for	most	repairs	you	undertake	in	your	life.	Most	fixes,
even	those	recommended	by	manufacturers,	are	discovered	through	trial	and	error,	or	are	simply	the	application	of
logic	to	a	Machine	Model	(“this	is	how	it’s	supposed	to	work,	so	do	this	when	it	breaks…”).	It	would	be	great	if	every
fix	could	be	verified	through	a	controlled	experiment,	but	again,	scarcity	has	the	last	say.	There	is	a	cost	to	create	truly
scientific	repair	information,	and	likewise	for	you	to	seek	out	and	employ	it	in	your	hour	of	need.

References:

Header	image:	Rothstein,	A.,	photographer.	A	milk	tester	for	the	Triple	B	milk	testing	associations.	His	equipment
includes	test	tubes,	pipettes,	a	centrifuge	and	laboratory	apparatus	seldom	found	on	the	farm.	Black	Hawk	County,
Iowa.	1939.	Nov.	[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2017779311/.

Is	Troubleshooting	A	Science?	was	originally	published	March	5,	2021.

Notes:

Is	Troubleshooting	A	Science?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 53

https://en.wikipedia.org/wiki/Lab_notebook
https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/
https://en.wikipedia.org/wiki/Computer_cluster
https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/
https://www.loc.gov/item/2017779311/

Part	2:	Strategies

Plot	a	course—straight	to	fixed!
(image:	Library	of	Congress)

If	it’s	broke,	you	should	try	to	fix	it.

Mike	McCormick

The	Strategies	are	time-tested,	practical	recipes	for	troubleshooting.	They	are	presented	in	no	particular	order:	when	troubleshooting	an	actual
problem,	don’t	expect	to	go	through	them	serially	(although	you’re	welcome	to	do	that	as	you’re	learning).	Once	you	are	familiar	with	them,
you’ll	intuitively	jump	to	the	one	you	think	is	going	to	have	the	biggest	payoff.	Knowing	where	to	start	is	the	“art”	in	The	Art	Of
Troubleshooting.	Also,	keep	in	mind	that	you	might	need	to	combine	several	strategies	to	actually	fix	something.	Mix	and	match	as	needed!	If
there’s	any	“magic”	here,	it’s	that	the	sum	of	these	very	simple	ideas	will	make	you	a	very	good	troubleshooter	indeed.

Part	2:	Strategies	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 54

https://www.loc.gov/item/2017877645/

The	Order	Of	Things

I	think	before	you	start	troubleshooting,	you	have	to	understand	the	system,	because	you	can	waste	a	lot	of	time,
checking	this	and	checking	that.	But	if	you	know	that	A	comes	before	B,	you	won’t	mess	around	with	B	without
checking	out	A	first.

Dan	McCormick

The	expression	“there’s	more	than	one	way	to	skin	a	cat”	nicely	summarizes	the	“change	the	order”	troubleshooting
strategy.	The	concept	is	to	alter	the	sequence	of	steps	being	taken	when	starting	up,	configuring,	or	operating	a
machine.	Among	these	multiple	pathways	there	will	be	some	combinations	which	work,	and	some	that	won’t.	Those
pathways	may	be	identical,	except	for	the	order	in	which	things	happen.	By	simply	rearranging	the	progression	of
events,	you	can	sometimes	get	a	system	working	again.

When	using	this	strategy,	don’t	feel	like	you	have	to	necessarily	understand	why	one	pathway	works	and	another	fails.
Fix	first	and	ask	questions	later.	The	ability	to	understand	why	one	particular	sequence	works	and	another	doesn’t	may
be	beyond	even	the	understanding	of	the	original	designer.	Given	that	so	many	products	today	are	integrations	of	parts
cobbled	together	from	multiple	manufacturers	and	outsourced	teams	splayed	around	the	globe,	this	isn’t	surprising.
That	is,	not	all	use	cases	or	interactions	among	components	may	be	well	understood.	As	a	troubleshooter,	you	should
be	focused	on	the	outcome	of	getting	things	running	again.	Answering	the	question	“Why?”	has	an	economic
component	to	it:	sometimes	there	is	a	hefty	cost	in	terms	of	time	and	effort	to	fully	understand	a	problem.	When
knowledge	is	pricey,	you	may	be	better	off	in	blissful	ignorance!

The	Order	Of	Things	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 55

https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/

Unless	you’ve	read	the	manual,	messing	with	the	startup	sequence	of	an	oil	refinery	is	not	recommended.
(photo:	Walter	Siegmund	/	CC	BY	2.5)

On	Startup

If	you	have	a	machine	with	multiple	subsystems,	interactions	between	them	while	they’re	starting	up	may	cause	a
failure.	Consider	a	simple	web	site	that	consists	of	a	database,	web	server	and	application	server.	These	3	elements	can
be	started	up	in	the	following	different	ways:

Startup
Sequence Order	of	Startup

1st 2nd 3rd

A Application
Server

Database	Server Web	Server

B Application
Server

Web	Server Database	Server

C Database	Server Application
Server

Web	Server

D Database	Server Web	Server Application
Server

E Web	Server Application
Server

Database	Server

F Web	Server Database	Server Application
Server

That’s	just	3	components	and	look	how	many	different	ways	there	are	to	initialize	the	system	(6	to	be	exact,	lettered	A-
F	in	the	table	above).	The	complexity	grows	exponentially,	with	the	factorial	of	the	number	of	subsystems	(n)	expressed
as:

n!

The	Order	Of	Things	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 56

http://en.wikipedia.org/wiki/File:Anacortes_Refinery_31911.JPG
http://creativecommons.org/licenses/by/2.5/deed.en

Here’s	a	table	that	shows	you	just	how	quickly	the	potential	complexity	of	a	startup	sequence	can	grow	as	the	number
of	subsystems	increases:

#	of	Subsystems #	of
Unique	Startup	Sequences

1 1

2 2

3 6

4 24

5 120

6 720

7 5,040

8 40,320

9 362,880

10 3,628,800

Astonishing,	right?!

Back	to	our	example:	you’ve	just	upgraded	the	application	server	and,	unbeknownst	to	you,	the	new	version	of	the
application	server	checks	to	see	if	the	web	server	is	running	first.	If	it	isn’t,	the	application	server	will	mysteriously	quit
without	explanation.	This	means	certain	startup	sequences	will	result	in	a	failure	(specifically:	A,	B,	and	C),	which	I’ve
highlighted	in	red	in	the	table	below:

Startup
Sequence

Order	of
Startup

Starts	up
successfully?

1st 2nd 3rd

A Application
Server

Database
Server

Web	Server NO

B Application
Server

Web	Server Database
Server

NO

C Database
Server

Application
Server

Web	Server NO

D Database
Server

Web	Server Application
Server

YES

E Web	Server Application
Server

Database
Server

YES

F Web	Server Database
Server

Application
Server

YES

However,	sequences	lettered	D,	E,	and	F	will	be	fine.	If	you	had	encountered	this	problem	“in	the	wild”	and	simply
cycled	through	the	various	startup	sequence	possibilities,	you	could	have	fixed	the	problem.

Tweaking	The	“Change	The	Order”	Strategy

As	you	can	see	from	the	table	showing	the	growth	in	the	number	of	startup	possibilities,	even	with	just	5	sub-systems,
there	are	120	unique	startup	sequences.	That’s	a	lot	of	things	to	try!	A	shortcut	is	to	first	make	an	educated	guess	as	to
the	failing	subsystem.	In	any	troubleshooting	exercise,	there	will	frequently	be	supplementary	evidence	pointing	to	the
culprit.	In	the	example	above,	it	could	have	been	that	the	application	server	was	missing	from	the	list	of	running
processes.	After	you’ve	made	your	guess,	try	these	2	things:

1.	 Move	the	suspicious	subsystem	to	the	 first	position	in	the	startup	sequence.
The	Order	Of	Things	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 57

2.	 Move	the	suspicious	subsystem	to	the	 last	position	in	the	startup	sequence.

Putting	the	suspicious	subsystem	first	or	last	gets	quickly	to	the	underlying	reason	as	to	why	the	“change	the	order”
strategy	works:	something	needs	to	be	present	or	absent	for	the	subsystem	to	function.	Putting	it	first	ensures	that,	with
all	the	other	subsystems	off,	nothing	can	interfere	with	its	ability	to	function.	However,	if	the	failing	subsystem	requires
another	subsystem	to	function,	starting	it	up	at	the	end	gives	it	the	greatest	chance	of	meeting	this	condition	because	all
possible	dependencies	will	be	satisfied.

For	the	ultimate	example	of	a	complicated	initialization	sequence,	consider	a	modern	oil	refinery.	It	can	take	weeks	to
bring	a	refinery	on-line	from	a	completely	cold	start.	Of	course,	if	you	tinker	with	that	kind	of	startup	sequence	as	a
troubleshooting	strategy,	you	better	know	what	you’re	doing!

When	Configuring

The	same	principle	applies	to	configuring	a	machine;	changing	the	order	in	which	you	apply	your	configuration
options	may	make	the	difference	between	it	working	and	it	not	working.	Take	the	example	of	a	network	router,	which
you	want	to	set	up	as	such:

1.	 Add	an	entry	to	the	routing	table.
2.	 Set	the	default	gateway.
3.	 Block	connections	from	all	outside	networks.
4.	 Allow	connections	from	select	internal	networks.

You	notice	that,	after	applying	these	options	in	the	order	listed	above,	the	router	will	consistently	crash	and	reboot
itself	after	applying	rule	#2	(i.e.,	you	never	make	it	to	#3).	Let’s	say	that,	after	playing	around	with	the	above	order,	you
can	get	the	router	to	work	by	placing	rule	#2	at	the	end	of	your	configuration	recipe.	According	to	what	you	know
about	what	the	router	should	be	capable	of,	there’s	no	good	reason	why	you	shouldn’t	be	able	to	do	the	configuration
in	your	original	order,	but	keep	in	mind	that	troubleshooting	is	dealing	with	reality.	The	reality	of	the	situation	is	that
no	amount	of	hemming	and	hawing	over	how	the	device	should	work	will	make	your	original	configuration	stick.	You
tried	it.	It	didn’t	work.	Move	on.

Also	note	that	the	math	concerning	the	number	of	possibilities	is	the	same:	if	you	want	to	count	the	number	of	unique
ways	to	apply	a	set	of	configuration	options,	it’s	also	n!.	Again,	if	the	number	is	large	you’ll	want	to	make	an	educated
guess	as	to	the	option	most	likely	to	be	causing	the	problem	and	move	that	to	the	front	or	to	the	end.

When	Operating

This	general	strategy	is	also	effective,	for	the	same	reasons,	when	changing	the	order	in	which	a	system	does	its	work.
You	may	have	a	collection	of	tasks	(A,	B,	C)	that	need	to	be	done,	but	the	final	result	is	independent	of	the	sequence	in
which	these	tasks	are	completed.	That	is,	A	→	B	→	C	results	in	the	same	output	as	all	the	other	possibilities:	A	→	C	→
B,	B	→	A	→	C,	B	→	C	→	A,	C	→	B	→	A,	and	C	→	A	→	B.	While	the	order	of	a	workflow	may	not	matter	theoretically,
as	we’ve	seen,	sometimes	in	practice	it	makes	a	big	difference.

Imagine	a	computer	program	that	validates	data	coming	from	a	form	on	a	web	page,	checking	that	a	customer’s	name,
address,	and	telephone	number	are	all	formatted	correctly	for	a	database.	Offhand,	you’d	say	that	it	shouldn’t	matter	in
what	order	these	validations	are	made:	all	three	fields	must	eventually	be	checked	for	the	data	to	be	made	safe	for	the
database.	However,	let’s	say	that	our	telephone	number	validator	uses	a	code	library	with	a	bug	that	causes	corruption
for	the	text	validator.	That	means	that	the	program	will	only	work	if	the	telephone	number	is	validated	last.	Of	course,
this	isn’t	how	code	libraries	are	supposed	to	work:	they	should	be	bug	free	and	well-tested!	However,	don’t	let	a
fixation	with	“should”	get	in	your	way	and	blind	you	to	considering	options	that	achieve	your	end	goal.	Can	you
rearrange	the	steps	of	your	workflow,	achieve	the	same	result,	and	do	an	end-run	around	your	issue	all	at	once?	Many
times,	the	answer	is	“Yes!”

References:

Header	image:	Lee,	R.,	photographer.	(1938)	House	erection.	First	panel	off	the	truck	is	made	into	an	easel	for	the
other	panels.	The	panels	will	be	unloaded	in	sequence	for	erection	to	avoid	handling.	Southeast	Missouri	Farms
Project.	New	Madrid	County,	Missouri,	United	States.	May,	1938.	[Photograph]	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/2017736764/.

The	Order	Of	Things	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 58

http://en.wikipedia.org/wiki/Oil_refinery#Flow_diagram_of_typical_refinery
https://www.loc.gov/item/2017736764/

The	Order	Of	Things	was	originally	published	September	28,	2011.

Notes:

The	Order	Of	Things	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 59

Skillful	Questioning,	Part	1

They	would	say,	“It	rattles	in	the	back.”	I	would	say,	“That’s	a	lot	of	area.”

Gerald	Quade

Skillfully	interviewing	people	to	obtain	meaningful	information	about	a	malfunction	is	an	essential	skill	for	the
troubleshooter.	Especially	if	you	are	called	in	to	look	at	a	complicated	system,	perhaps	spread	across	geographies	or
teams,	you	may	initially	be	spending	a	good	deal	of	time	simply	talking	to	people	and	reading	incident	reports.	Asking
the	right	questions	at	this	stage	may	mean	the	difference	between	a	quick	fix	and	a	fruitless,	time-consuming	odyssey.
Discovering	where	to	attack	is	critical,	a	process	that	is	aided	by	smart	queries.

Let	me	introduce	a	powerful	tool	that	goes	beyond	“asking	the	right	questions,”	one	that	will	help	you	in	all	of	your
communications:	insights	of	the	“meta-model”	from	the	field	of	Neuro-linguistic	Programming	(NLP).	If	you’re
unfamiliar,	NLP	is	the	“science	of	subjectivity”	and	was	born	when	its	founders	Richard	Bandler	and	John	Grinder
studied	three	extraordinary	therapists.	These	therapists	(Virginia	Satir,	Fritz	Perls,	and	Milton	Erickson)	were	able	to
achieve	amazing	results	with	their	clients	in	short	periods	of	time.	After	closely	observing	them,	Bandler	and	Grinder
constructed	a	model	of	how	their	methods	worked,	the	core	of	which	was	how	they	used	language.	The	insights
extracted	by	Bandler	and	Grinder	have	been	applied	to	all	kinds	of	problems:	therapy,	personal	change,	sales,
management,	etc.

For	our	purposes,	we’re	primarily	interested	in	the	contributions	to	NLP	made	by	noted	family	therapist	Virginia	Satir.
Satir	was	able	to	ask	questions	that	uncovered	hidden	information	and	compelled	her	clients	to	change	by	revealing

Skillful	Questioning,	Part	1	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 60

http://en.wikipedia.org/wiki/Neuro-linguistic_programming

their	limiting	beliefs.	Bandler	and	Grinder	distilled	the	very	precise	way	Satir	used	language	(in	particular,	her	style	of
questioning)	down	to	its	essential	elements	and	dubbed	it	the	“meta-model.”	The	meta-model	is	a	series	of	verbal
patterns	and	responses	to	them	in	the	form	of	questions.	The	patterns	indicate	that	information	is	missing,	which	the
questions	attempt	to	recover.	The	questions	can	also	be	used	to	find	and	confront	discrepancies	between	a	reporter’s
beliefs	and	reality.

Troubleshooting	often	starts	like	this,	with	an	interview.
(image:	Maj.	Dale	Greer	/	Wikimedia	Commons)

You	may	be	wondering	why	I’m	introducing	you	to	techniques	from	the	world	of	therapy,	when	presumably	this	is	a
work	about	troubleshooting.	Don’t	worry,	you’re	not	going	to	ask	anyone	to	lie	down	on	a	leather	couch	and	ask	them
about	their	mother,	Freud-style.	But,	since	the	theme	of	this	work	is	“machine	problems	are	actually	human	problems,”
it’s	not	surprising	that	the	tools	needed	to	mend	broken	relationships	and	dysfunctional	families	are	also	useful	to	the
troubleshooter.	The	reason	for	this	is	that	the	entry	point	to	nearly	every	troubleshooting	exercise	starts	with	a
communication,	usually	from	a	human	or	from	a	(human-built)	monitoring	system.	Your	grandma	calls	you	and	says
the	Internet	is	broken,	one	of	your	tenants	knocks	on	your	door	and	complains	that	his	lights	are	out,	your	phone
buzzes	with	texts	about	a	problem	at	the	plant,	etc.	Machines	don’t	talk,	so	you	better	get	good	at	listening	to	those	that
speak	on	their	behalf	(i.e.,	humans).	That	means	going	deep	in	the	ways	people	talk	about	their	problems.	As	you	will
see,	it	really	doesn’t	matter	if	we’re	talking	about	our	frustrations	with	a	family	member	or	a	broken-down	car,	because
the	difficulties	people	have	describing	their	problems	are	universal.

Knowing	the	“meta-model”	has	been	invaluable	to	me,	both	at	work	and	at	home.	Understanding	it	will	make	you	a
much	better	troubleshooter	and	a	more	effective	communicator	in	all	situations.	After	you	learn	it	and	apply	it	to	your
life,	you’ll	start	to	get	a	sense	of	what’s	missing	when	people	are	talking	to	you.	When	it	comes	to	troubleshooting,	you
will	find	that	people,	either	consciously	or	subconsciously,	delete	information	when	reporting	issues.	They	may	feel
partly	responsible	for	the	breakdown	of	a	system,	be	protecting	a	fellow	employee	or	simply	have	a	terse
communication	style,	thinking	they’re	doing	you	a	favor	by	being	brief.	No	matter	the	origin	of	such	obfuscation,	your
job	as	a	troubleshooter	is	to	cut	through	it	all.	The	meta-model	is	the	knife	that	will	help	you	do	that,	with	the	the
underlying	theme	being	the	recovery	of	the	hidden	information	and	obtaining	clarity	from	distorted	descriptions.

So,	let’s	walk	through	the	components	of	the	meta-model,	with	help	from	one	of	the	first	books	I	read	on	the	subject:
Introducing	NLP	by	Joseph	O’Connor	and	John	Seymour.	As	we	go	along,	we’ll	see	how	the	meta-model	relates	to
interviewing	while	troubleshooting:

Unspecified	Nouns

Skillful	Questioning,	Part	1	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 61

https://commons.wikimedia.org/wiki/File:Thunder_aircraft_begin_to_arrive_at_Kentucky_Air_Guard_Base_120418-F-VT419-022.jpg

Unspecified	Nouns	are	clarified	by	asking:	“Who	or	what	specifically…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	1

Consider	the	two	following	descriptions	of	the	same	problem:

1.	 “It	won’t	start.”
2.	 “In	my	garage,	when	I	turn	the	key	in	my	2011	Porsche	Carrera	4	GTS	Cabriolet,	the	following	happens:	I	hear	a

grinding	noise,	the	oil	light	on	the	dash	flashes,	the	motor	catches,	runs	for	2	seconds	and	then	stops.”

The	two	statements	above	are	both	grammatically	correct.	They	also	truthfully	describe	the	same	event,	but	one	is
infinitely	more	useful	to	a	troubleshooter.	The	first	description	has	omitted	a	lot	of	details	about	the	“it”	that	is
referenced.	These	details	have	been	turned	into	specifics	in	the	second	description.	The	key	to	recovering	information
about	unspecified	nouns	is	to	ask	for	more	information:	“What	specifically…?”	In	this	example	above,	what	exactly	is
“it,”	to	whom	does	it	belong	and	where	is	it	located?	If	the	car	was	at	the	bottom	of	a	lake	or	on	the	moon,	would	that
be	good	to	know	and	would	you	still	be	surprised	that	it	didn’t	start?

You	also	may	encounter	the	passive	voice,	which	deletes	the	active	subject	of	a	sentence.	This	may	give	the
impression	that	something	just	happened	on	its	own,	with	the	narrator	being	a	helpless	observer:

“The	paper	tray	was	overstuffed.”

Paper	trays	don’t	become	overstuffed	on	their	own.	Who	(or	what)	overstuffed	the	tray	and	on	which	printer	was	the
tray	attached?

Unspecified	Verbs

Unspecified	Verbs	are	clarified	by	asking:	“How	specifically…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	1

When	troubleshooting,	it’s	frequently	of	critical	importance	how	something	was	being	done	before	a	failure.	Almost
every	machine	you	can	think	of	has	a	right	way	and	a	less-than-right-way	of	using	it.	Some	machines	have	a	wide
latitude	in	how	they	can	be	operated	and	others	require	that	strict	procedures	be	followed.

“She	shut	down	the	computer.”
“I’m	trying	to	start	the	motor	right	now.”
“He	replaced	the	alternator	last	week.”

You	can	see	that	information	about	the	“how”	is	missing	from	the	examples	above.	Was	the	computer	shut	down	by
using	the	shutdown	command	from	within	the	operating	system?	By	pushing	the	on/off	switch?	By	pulling	the	power
cord?	By	shutting	off	a	circuit	breaker	at	the	power	panel?	By	an	EMP	from	a	nuclear	explosion?

“How	specifically	did	she	shut	down	the	computer?”
“How	specifically	are	you	starting	the	motor?”
“How	specifically	did	he	replace	the	alternator	last	week?”

Comparisons

Comparisons	are	clarified	by	asking:	“Compared	with	what…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	1

Buckle	up	for	unspecified	comparisons,	because	they	can	contain	all	kinds	of	assumptions	and	expectations.

Skillful	Questioning,	Part	1	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 62

http://en.wikipedia.org/wiki/Electromagnetic_pulse

“The	website	is	slow.”
“The	engine	is	idling	fast.”

Saying	“the	website	is	slow”	contains	an	implicit	comparison:	“slow”…compared	to	what?	The	way	the	website	was
operating	last	week?	Slow	compared	to	Google?	Also,	is	their	definition	of	“slow”	based	on	a	measurable	and	objective
metric?	Your	job	is	to	discover	the	missing	context	by	asking	for	more	information,	and	to	corroborate	these	kinds	of
assertions	with	evidence.	Knowing	what	something	is	being	compared	to	can	be	critical,	especially	if	are	you	being
asked	to	restore	it	to	an	ideal	that	is	unattainable.

“The	website	is	slow,	compared	to	what?”
“The	engine	is	idling	fast,	compared	to	what?”

Judgements

Judgments	are	clarified	by	asking:	“Who	is	making	this	judgment,	and	on	what	grounds	are	they	making	it?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	1

In	a	similar	vein	to	comparisons,	you	may	encounter	implicit	judgements	when	interviewing:

“Obviously,	a	low	voltage	condition	caused	the	failure.”
“Clearly,	the	burner	isn’t	heating	up	fast	enough.”

If	you	replace	the	word	“obviously”	with	“it	is	obvious,”	it	becomes	clear	that	there	is	critical	information	missing	here:
namely	who	this	is	obvious	to	and	why!	If	you’re	going	to	accept	someone’s	judgements	when	troubleshooting,	do	it
willingly,	not	by	having	it	smuggled	in	under	the	cover	of	vague	language.

“Who	says	that	low	voltage	caused	the	failure,	and	how	do	they	know	that?”
“Who	says	that	the	burner	isn’t	heating	up	fast	enough,	and	how	do	they	know	that?”

If	you	can’t	put	your	noun	in	here,	it’s	probably	a	nominalization.
(image:	Erich	Ferdinand	/	CC	BY	2.0)

Nominalizations
Skillful	Questioning,	Part	1	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 63

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
http://www.flickr.com/photos/erix/2994697600/
http://creativecommons.org/licenses/by/2.0/deed.en

A	Nominalization	is	clarified	by	turning	it	into	a	verb	and	asking	for	the	missing	information:	“Who	is
nominalizing	about	what,	and	how	are	they	doing	it?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	1

Nominalizations	are	verbs	describing	processes	that	have	been	turned	into	nouns	(e.g.,	education,	communication,
etc.).	It’s	a	bit	of	semantic	magic	to	take	a	very	active	process	(like	“educate”)	and	turn	it	into	a	static	noun	(like
“education”),	giving	the	concept	a	veneer	of	fixed	permanence.	You	can	apply	the	“wheelbarrow	test”	to	find	out	if
you’re	dealing	with	a	nominalization.	If	it	can’t	be	put	into	a	wheelbarrow,	that	is,	if	the	noun	can’t	be	tasted,	touched,
smelled,	heard,	or	seen,	it’s	likely	a	nominalization.	Pay	close	attention	to	nominalizations	because	they	can	contain
vast	differences	between	people’s	maps	of	the	world.	It’s	easy	to	see	why,	because	an	abstract	concept	like
“education”	is	a	collection	of	activities	that	could	include:	teaching,	testing,	learning,	reading,	doing	homework,	on-
line	courses,	public	or	private	funding,	etc.	Based	on	your	background	and	beliefs,	you’ll	likely	have	an	opinion	on
what	the	essential	components	should	be.	Thus,	“education”	can	mean	very	different	things,	depending	upon	who
you’re	asking.	Of	course,	nominalizations	are	extremely	useful!	It	would	be	very	tedious	to	say	“teaching,	testing,
learning,	reading,	and	doing	homework”	instead	of	“education”	every	time	you	wanted	to	talk	about…education.

“The	investigation	into	the	structural	failure	turned	up	nothing.”

In	the	context	of	troubleshooting,	just	be	aware	of	nominalizations	and	the	vast	amount	of	information	they	leave	out.
You’ll	want	to	find	out	the	who,	what	and	how	behind	the	nominalization	by	asking	for	more	details.	Because,	in	the
example	above,	an	“investigation”	could	mean:	“I	made	a	phone	call	to	some	guy	and	left	a	voicemail,”	or	“We	had	a
team	of	25	structural	engineers	studying	the	problem	for	2	years	that	culminated	in	a	1,000-page	report.”

“Who	investigated	what	about	the	structural	failure,	how	was	the	investigation	conducted,	and	what	conclusions
were	reached?”

The	rest	of	the	meta-model	is	covered	in:	Skillful	Questioning,	Part	2.

References:

Header	image:	Trikosko,	M.	S.,	photographer.	(1975)	President	Gerald	Ford	taking	questions	from	reporters	during
a	press	conference	at	the	White	House,	Washington,	D.C.	Washington	D.C,	1975.	Jun.	9.	[Photograph]	Retrieved
from	the	Library	of	Congress,	https://www.loc.gov/item/2005684016/.
1	Joseph	O’Connor	and	John	Seymour,	 Introducing	NLP	(London:	Thorsons/HarperCollins,	1990),	pgs.	93-96.

Skillful	Questioning,	Part	1	was	originally	published	October	4,	2011.

Notes:

Skillful	Questioning,	Part	1	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 64

https://artoftroubleshooting.com/2011/10/10/skillful-questioning-part-2/
https://www.loc.gov/item/2005684016/

Skillful	Questioning,	Part	2

I	don't	put	much	stock	in	initial	reports,	except	that	something	isn't	working	up	to	par.

Mike	McCormick

Let’s	continue	describing	a	truly	invaluable	way	of	gaining	clarity	by	challenging	vague	language	(started	in	 Part	1,
which	introduced	the	“meta-model”).	In	any	context,	but	especially	when	interviewing	people	while	troubleshooting,
getting	the	right	information	about	the	problem	at	hand	is	critical	to	correctly	directing	your	efforts.

I	used	to	play	a	little	game	when	I	was	learning	the	various	parts	of	the	meta-model.	Each	week,	I	would	focus	on	one
of	the	meta-model’s	language	patterns	and	score	one	point	whenever	I	observed	someone	making	a	statement	that
included	the	pattern.	A	few	times,	I	got	so	excited	that	I	would	blurt	out	“unnnnnnspecified	nouuuuuuuuuuun!”	or
“moooooodal	operator	of	possibility!”	and	do	a	little	victory	dance.	Judging	by	the	look	on	people’s	faces,	I	don’t
recommend	this.	I	forgot	the	words	of	the	master:

Let	your	workings	remain	a	mystery.
Just	show	people	the	results.

Tao	Te	Ching	(verse	36)	1

Skillful	Questioning,	Part	2	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 65

https://artoftroubleshooting.com/2011/10/04/skillful-questioning-part-1/

So,	go	ahead	and	play	the	meta-model	game	all	you	want,	but	win	 silently.	Anyway,	let’s	finish	the	list	of	meta-model
language	patterns	(from	Introducing	NLP	by	Joseph	O’Connor	and	John	Seymour)	and	see	how	they	apply	to
troubleshooting.

Sherlock	Holmes	always	uncovered	the	right	details.	Clearly,	he	knew	the	meta-model.
(image:	Mr.	Frosty	Man	/	CC	BY-ND	2.0)

Modal	Operators	Of	Possibility

Modal	Operators	of	Possibility	–	“I	can’t”	–	are	clarified	by	asking:	“What	would	happen	if	you	did…?”	or,	“What
prevents	you…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Modal	operators	of	possibility	are	statements	concerning	what	is	possible:	they	are	words	like	“can,”	“cannot,”
“possible,”	and	“impossible.”	But,	they’re	just	words!	As	such,	they	may	or	may	not	reflect	the	real	world.	As	a
troubleshooter,	don’t	get	sucked	into	someone	else’s	reality	and	accept	their	ideas	about	what	is	possible	or	not
possible	without	proof	(see	the	virtue	of	skepticism	for	more	on	this	topic).	Especially	on	the	“not	possible”	side	of	the
ledger,	you’ll	frequently	encounter	people	who	are	locked	into	the	well-rehearsed	sequence	of	their	workflow.	Noting
someone’s	routine	is	fine	but	remember	that	effective	troubleshooting	frequently	requires	deviating	from	the	“official
script”	(for	example,	by	changing	the	order	in	which	things	happen).

“I	cannot	get	the	engine	to	start.”

These	words	about	possibilities,	like	the	universal	quantifiers	discussed	below,	also	don’t	allow	for	exceptions.
Someone	who	says	they	“cannot”	do	something,	or	for	whom	a	task	is	“impossible,”	is	using	language	that	is
constraining	and	final.	By	the	way,	I’m	not	saying	that	you	can	overcome	an	actual,	respect-the-laws-of-physics	type	of
limitation	simply	by	asking	a	clever	question.	The	person	who	says	they	“can’t”	may	very	well	be	right	about	what	is
possible.	However,	if	they	are	being	held	back	simply	by	the	way	they’re	framing	the	problem,	you	can	help	them	get
unstuck	by	throwing	a	jarring	question	into	the	mix.

The	way	to	counter	modal	operators	of	possibility	is	to	say	“Show	me!”	and	ask,	“What	would	happen	if	you	did?”	This

Skillful	Questioning,	Part	2	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 66

https://web.archive.org/web/20131110173448/https://www.flickr.com/photos/90728885@N06/8240476087/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
https://artoftroubleshooting.com/2011/09/20/skepticism/
https://artoftroubleshooting.com/2011/09/28/the-order-of-things/

simple	question	is	all	it	takes	to	pierce	these	limiting	beliefs	and	get	the	mind	working	on	alternatives.

“What	is	stopping	you	from	starting	the	engine?”

Modal	Operators	Of	Necessity

Modal	Operators	of	Necessity	–	“I	mustn’t/I	have	to”	–	are	clarified	by	asking:	“What	would	happen	if	you
did/didn’t…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Modal	operators	of	necessity	concern	needs	and	involve	words	like	“should,”	“must,”	“ought,”	and	their	negations:
“should	not,”	“must	not,”	and	“ought	not.”	Like	the	modal	operators	of	possibility,	these	words	involve	presuppositions
that	may	not	be	helpful	or	true.	They	also	hint	at	a	rule	or	procedure	being	followed,	but	only	indirectly.	You	want	to
bring	these	implicit	assumptions	out	into	the	open	for	examination.

“You	should	turn	on	the	backup	battery	before	engaging	the	ignition.”

Frequently,	you	will	discover	that	the	person	has	no	better	justification	for	their	actions	than	“that’s	what	I	was	told	to
do”	or	“that’s	the	way	I’ve	always	done	it.”	The	backup	battery	is	always	turned	on	before	you	engage	the	ignition
because…the	manual	says	there	will	be	an	explosion	if	you	don’t?	A	leprechaun	told	you	to	do	it	that	way?	Again,
successful	troubleshooting	often	requires	straying	from	the	well-trod	path,	so	you	should	keep	in	mind	that	the	“way
we’ve	always	done	it”	is	not	necessarily	the	only	way	to	do	it.

“What	will	happen	if	you	didn’t	turn	on	the	backup	battery	before	engaging	the	ignition?”

Universal	Quantifiers

Universal	Quantifiers	are	questioned	by	asking	for	a	counter	example:	“Has	there	ever	been	a	time	when…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Humans	like	to	generalize:	it’s	faster,	easier,	and	makes	you	sound	confident.	To	a	troubleshooter,	however,	exceptions
will	frequently	point	the	way	to	a	solution.	When	you	hear	words	like	“all,”	“every,”	“always,”	“never,”	or	“none,”
recognize	that	someone	might	be	generalizing.	Universal	quantifiers	like	these	allow	no	room	for	exceptions.	If	they
are	true,	that’s	good	to	know.	If	not,	you’ll	want	to	understand	the	exceptions.

“This	stupid	thing	never	works!”

To	unravel	a	universal	quantifier,	ask	for	an	exception.	In	this	case:	“Has	there	ever	been	a	time	when…that	stupid
thing	worked?”

Operational	data	is	another	effective	way	to	contradict	universal	quantifiers.	Take	a	statement	like:	“The	temperature	in
the	warehouse	has	never	exceeded	82	degrees	in	the	month	July.”	If	you	had	a	graph	or	table	showing	the	recorded
temperature	during	that	time	period,	you	could	easily	see	if	this	universal,	no-exceptions-allowed	statement	is	true	or
false.

I	hear	universal	quantifiers	all	the	time	when	asked	to	help	fix	problems.	People	like	to	exaggerate	and,	particularly	if
they’re	angry	that	something	is	broken,	they	can	really	lay	it	on	thick	with	words	like	“never”	and	“always.”

Complex	Equivalence

Complex	Equivalences	can	be	questioned	by	asking:	“How	does	this	mean	that?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Skillful	Questioning,	Part	2	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 67

Linking	two	statements	together	to	mean	the	same	thing	is	called	a	“complex	equivalence”;	the	speaker	is	leading	you
(perhaps	unintentionally)	to	make	an	association	between	two	things.	But	is	the	connection	real?

“The	workers	are	taking	a	break.	The	assembly	line	is	stopped.”

When	it	comes	to	troubleshooting,	never	underestimate	the	ability	of	people	to	jump	to	conclusions.	Worse	yet,	 you
may	attempt	to	fill	in	the	blanks	and	reach	false	conclusions	all	by	yourself	(even	if	the	speaker	wasn’t	making	that
leap).	The	mind	loves	to	fill	in	missing	gaps	with	its	own	interpretations!	In	this	example,	it	may	be	true	that	the
assembly	line	is	stopped	and	the	workers	are	taking	a	break.	But,	that	doesn’t	necessarily	mean	that	one	caused	the
other.	The	assembly	line	could	be	idle	because	of	a	work	break,	but	it	could	also	be	the	other	way	around:	perhaps	the
workers	are	taking	it	easy	because	the	assembly	line	is	broken.

“How	does	the	workers	taking	a	break	mean	the	assembly	line	is	stopped?”

Presuppositions

Presuppositions	can	be	brought	into	the	open	by	asking:	“What	leads	you	to	believe	that…?”	and	filling	in	the
presupposition.

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Making	your	way	in	this	world	demands	reliance	on	beliefs	and	expectations.	For	example,	imagine	the	paralyzing	fear
you	would	experience	if	you	didn’t	simply	trust	in	the	Law	of	Gravity.	It’s	much	easier	and	less	stressful	to	assume	that
gravity	will	behave	like	you	expect.	Unlike	our	experience	of	gravity,	other	beliefs	we	hold	are	highly	contextual	(i.e.,
they’re	only	true	in	certain	cases)	or,	sorry	to	be	the	bearer	of	bad	news,	they’re	simply	false.

There’s	nothing	wrong	with	presuppositions	per	se	as	they	are	essential	to	life.	But,	if	you’ve	been	called	in	to	fix
something,	it’s	likely	that	someone’s	expectations	have	been	violated	(unless,	of	course	the	expectation	is	that	all
machines	eventually	break	down—now	that’s	a	very	healthy	belief!).	Therefore,	detecting	false	presuppositions	are
critical	to	your	success	as	a	troubleshooter.	Words	and	phrases	typically	associated	with	presuppositions	are:	“since,”
“when,”	“if,”	“realize,”	“be	aware,”	“ignore,”	and	suggestive	questions	beginning	with	“why.”

Statement:	“When	this	gauge	reads	100	lbs./sq.	in.	of	pressure,	then	turn	the	release	valve.”	→	 Presupposition:
waiting	for	100	lbs.	of	pressure	to	build	is	needed	before	turning	the	release	valve.
Statement:	“Why	are	you	trying	to	wreck	the	motor?”	→	 Presupposition:	I’m	wrecking	the	motor.	And,	I’m	doing	it
intentionally!
Statement:	“Ignore	the	green	wire.	Are	you	going	to	cut	the	blue	wire	or	the	red	wire	to	defuse	the	bomb?”	→
Presupposition:	I	must	choose	either	the	blue	or	red	wire,	as	opposed	to	doing	something	else	to	stop	the
countdown	timer.	FYI,	always	choose	the	red	wire.
Statement:	“Be	aware	of	the	fuel	tank	reading.”	→	Presupposition:	the	fuel	tank	reading	is	accurate	and	important.

Cause	And	Effect

Cause	and	Effect	can	be	questioned	by	asking:	“How	exactly	does	this	cause	that?”	or	“What	would	have	to
happen	for	this	not	to	be	caused	by	that?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Cause	and	effect	is	a	powerful	way	of	explaining	our	world.	If	A	causes	B,	then	you’ve	found	the	lever	to	prevent	B,	or
make	sure	it	happens	all	the	time,	depending	on	whether	B	is	a	good	or	bad	thing!

Statement:	“The	car	would	have	started,	but	the	battery	was	low.”	→	Cause/effect	assumption:	the	depleted
battery	was	the	sole	reason	the	car	wouldn’t	start.

Skillful	Questioning,	Part	2	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 68

http://tvtropes.org/pmwiki/pmwiki.php/Main/WireDilemma

Statement:	“The	contamination	resulted	from	a	leak	in	Tank	#12.”	→	Cause/effect	assumption:	the	only	source	of
contamination	was	from	Tank	#12,	and	the	leak	caused	it.
Statement:	“An	abnormally	high	number	of	database	operations	used	up	all	available	memory,	making	the	server
unresponsive.”	→	Cause/effect	assumption:	the	database	used	up	all	the	memory	and	the	server	crashed	because
of	it.

Let’s	see…how	does	this	cause	that?
(image:	Jahobr	/	Wikimedia	Commons)

With	respect	to	problem	reports,	“cause	and	effect”	statements	are	a	Big	Deal.	You’ll	want	to	thoroughly	investigate
them	because,	subconsciously,	you	will	be	drawn	to	them	like	Germany	to	David	Hasselhoff.	You	won’t	be	able	to
look	away!	If	you’re	not	on	guard,	these	statements	will	burrow	their	way	into	your	head	and	take	over	the
troubleshooting	process,	leading	you	on	the	proverbial	“wild	goose	chase.”

Before	that	happens,	step	back	and	ask	some	skillful	questions:

“How	does	this	one	thing	cause	the	other?”:	This	may	reveal	new	possibilities	of	causation,	especially	if	coupled
with	the	question	“What	would	it	take	for	A	to	not	cause	B?”
“Would	you	please	describe	the	process	that	makes	A	cause	B?”: 	The	details	revealed	here	may	show	a	weak	link
(or,	none	at	all!)	between	A	and	B.	Additional	contributing	factors	may	also	be	uncovered.
“Has	there	ever	been	a	situation	where	A	didn’t	cause	B?” :	If	you	can	point	to	a	situation	with	the	same	cause	but
not	the	same	effect,	there	may	more	to	the	story	than	a	simple	A	→	B	explanation.

Mind	Reading

Mind	Reading	is	questioned	by	asking:	“How	exactly	do	you	know…?”

Joseph	O’Connor	&	John	Seymour,	Introducing	NLP	2

Presuming	to	know	what	someone	else	is	thinking	or	feeling	can	be	filed	under	the	category	of	“mind	reading.”

Skillful	Questioning,	Part	2	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 69

https://commons.wikimedia.org/wiki/File:Unnecessarily_complicated_gears_a.gif

“Jim	doesn’t	care	about	the	malfunction	and	won’t	know	how	to	help	us…”

In	the	context	of	troubleshooting,	you	may	encounter	this	type	of	heroic	extrapolation	when	brainstorming	a	list	of
people	who	could	help	you	out.	However,	don’t	back	down	and	pass	over	a	potential	ally	without	first	questioning
why.	You	may	hear	all	kinds	of	weird	reasons	why	you	shouldn’t	contact	the	one	person	who	can	fix	your	problem!

“How	exactly	do	you	know	that	Jim	won’t	help	us?”

Conclusion

We	all	have	different	models	of	the	world	that	are	reflected	in	the	language	we	use.	The	meta-model	gives	you	insight
into	those	differences.	By	assuming	you	don’t	know	exactly	what	a	person’s	words	mean,	you	can	dig	deeper	for	the
precision	that’s	so	often	needed	when	troubleshooting.

References:

Header	image:	Bain	News	Service,	P.	Tom	Gibbons	interviewed.	[No	Date	Recorded	on	Caption	Card]
[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2014716240/.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	36.
2	Joseph	O’Connor	and	John	Seymour,	Introducing	NLP		(London:	Thorsons/HarperCollins,	1990),	pgs.	97,	99,	101,
102,	104,	105.

Skillful	Questioning,	Part	2	was	originally	published	October	11,	2011.

Notes:

Skillful	Questioning,	Part	2	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 70

https://www.loc.gov/item/2014716240/

Put	It	Down	And	Come	Back	To	It	Later…

That’s	why	talking	a	walk	or	having	a	cup	of	coffee	is	an	important	problem-solving	technique.	Not	solving	the
problem	is	an	important	part	of	solving	the	problem.	Because	then	you	come	back	and	you’re	like	“Oh,	that’s
why!	There’s	the	answer!”

Alex	Chaffee

You’ve	probably	been	told	at	least	once	in	your	life:	“You	should	sleep	on	it.”

It’s	a	solid,	common-sense	thing	to	do	before	making	a	big	decision.	I	sometimes	imagine	asking	Wilford	Brimley	for
advice	and,	besides	sternly	telling	me	to	eat	a	healthy	breakfast	of	whole	grain	oats ,	I	bet	one	of	his	go-to	nuggets	is
“sleep	on	it.”	As	I’ve	hinted	at	before,	troubleshooting	has	lessons	for	life,	and	conversely	life’s	lessons	have	something
to	teach	the	Troubleshooter.	The	benefits	of	“sleeping	on	it”	are	available	in	either	realm:	you	gain	perspective	and
insight	by	temporarily	stepping	away	from	your	problems.

You	may	have	implemented	this	strategy	by	accident.	That	is,	you	hacked	away	at	something	until	you:

1.	 Got	too	hungry.
2.	 Got	too	tired.

Put	It	Down	And	Come	Back	To	It	Later…	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 71

http://www.youtube.com/watch?v=lgdTJgWE-DM

3.	 Got	a	call	from	your	sweetheart,	asking	if	you	were	coming	home	soon.

Circumstances	forced	you	to	take	a	break	and	so	you	put	down	your	tools	and	came	back	to	the	problem	later.	You
might	have	noticed	that	when	you	did	return	to	the	issue,	after	eating	or	sleeping	or	doing	damage	control	for	being
late	to	dinner,	frequently	the	solution	was	staring	you	in	the	face!	Why	is	this?

Believe	it	or	not,	this	is	a	legitimate	troubleshooting	strategy.
(image:	Timothy	Krause	/	CC	BY	2.0)

While	you	were	distracted,	your	unconscious	mind	was	doing	some	work	on	its	own	in	the	background.	The	“why”
and	“how”	hasn’t	exactly	been	nailed	down	yet,	given	that	the	science	on	the	unconscious	mind’s	problem-solving
abilities	is	an	area	of	ongoing	debate	and	research.	Beyond	a	vague	notion	that	some	kinds	of	complex	mental	tasks
may	benefit	from	either	conscious	or	unconscious	processing,	the	understanding	of	why	(especially	on	the	level	of
what	is	actually	happening	in	the	brain)	is	probably	a	long	way	off.	That’s	okay	though,	we	don’t	have	to	understand
how	electricity	works	in	order	to	benefit	from	its	use.	In	the	context	of	sleep,	we	know	that	unconscious	processing	is
critical	to	the	consolidation	of	memories	in	the	“acquisition	→	consolidation	→	recall”	model 	of	learning.	It	also
makes	it	clearer	why	your	perspective	is	changed	the	morning	after	you’ve	“slept	on	it”:	you	probably	assimilated	a	lot
overnight!	Troubleshooting	can	involve	a	lot	of	learning,	especially	if	the	failure	condition	or	system	is	new	to	you,	so
it’s	not	surprising	that	sleep	is	beneficial.

There’s	also	a	concept	called	“fractionation,”	used	by	hypnotists,	that	I	also	think	is	relevant	here.	Hypnotists	know	that
to	put	someone	deeper	into	a	state	of	trance,	it’s	useful	to	take	them	out	of	trance	temporarily.	Then,	when	you	put
them	back	under,	they’ll	go	in	even	deeper.	Intense	troubleshooting	can	closely	resemble	a	state	of	trance:	you’re	very
focused	on	the	problem,	often	to	the	exclusion	of	the	world	around	you.	Sometimes,	I’ve	been	working	on	fixing
something	and	been	concentrating	so	intensely	that	I	didn’t	even	notice	someone	enter	the	room!	However,	a	plateau
will	eventually	be	reached	and	the	only	way	to	get	any	further	is	to	break	your	concentration,	entertain	a	distraction
and	then	go	back.	And,	when	you	do,	it’ll	be	deeper.

You	might	also	be	“looping,”	trying	the	same	thing	over	and	over	again	with	little	progress.	We	usually	think	of	being
interrupted	while	working	as	a	bad	thing,	and,	in	our	high-tech	world	of	fractured	attention	spans,	most	of	the	time	I
think	that’s	true.	However,	if	you’re	chasing	your	tail,	an	interruption	can	be	very	useful	to	breaking	the	pattern.	In
formulating	this	strategy,	I	was	impressed	by	the	number	of	times	I’d	be	sitting	in	my	office,	“looping”	on	a	problem
and	the	phone	would	ring	or	someone	would	knock	on	my	door.	We’d	chat	for	a	few	minutes	and	then	I’d	turn	back	to
the	problem	and	BOOM!,	the	answer	would	hit	me.

Put	It	Down	And	Come	Back	To	It	Later…	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 72

file:///Users/jasonmaxham/Library/CloudStorage/Dropbox/JGM/Art%20of%20Troubleshooting/book/v3/img/5982079d478f4c3cacda7ab5fbcbde5e027867fe5668e1cb551969b7313d7c93
http://www.flickr.com/photos/33498942@N04/5910998766/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.apa.org/science/about/psa/2009/10/sci-brief.aspx
http://en.wikipedia.org/wiki/Unconscious_cognition
http://healthysleep.med.harvard.edu/healthy/matters/benefits-of-sleep/learning-memory

When	diminishing	returns	set	in,	can	you	punch	out,	relax,	and	let	your	subconscious	do	the	rest?
(image:	Marjory	Collins	/	Library	of	Congress)

If	I	may	add	something	original	to	the	observation	that	being	forced	to	step	away	from	a	problem	is	useful	when
troubleshooting,	it’s	this:	do	it	intentionally!	Don’t	wait	for	yourself	to	get	too	hungry	or	too	tired	or	for	that	angry
phone	call	to	get	some	much-needed	distance	from	a	problem.	That’s	right,	you	will	be	a	much	more	effective
troubleshooter	if	you	take	regular	breaks.	Some	people	like	to	use	a	timer	(e.g.,	the	Pomodoro	Technique)	to	know
when	to	step	away.	I	prefer	a	more	open-ended	approach	based	on	how	things	are	progressing:	I	now	have	a	good
sense	for	when	diminishing	returns	of	spending	additional	time	on	a	problem	have	taken	hold.	For	me,	that’s	the	best
time	for	a	break.	This	ties	in	nicely	with	the	research	about	the	role	of	conscious	and	unconscious	processes	while
learning:	there	is	a	point	when	you’ll	become	saturated	on	either	front	(most	likely	the	conscious	side).	If	you’ve
noodled	all	day	straight	on	a	problem	and	are	stuck,	it’s	unlikely	you’ll	make	further	progress	without	some	intervening
time	away	for	unconscious	processing	(like	sleep).	To	do	that	intra-day,	I	usually	like	to	take	a	short	walk.	You	can
choose	your	own	pleasant	distraction.

If	you’re	a	Type	A	fidgeter	who	must	be	busy	every	second	and	don’t	think	you	can	handle	stepping	away,	try	this
instead:	switch	to	a	different	aspect	of	the	problem.	Move	on	to	another	component	or	subsystem	that	needs
inspection,	read	the	manual,	collect	some	data,	or	do	some	research	on	the	Internet.	You	can	also	keep	going	by
simply	switching	strategies	which,	after	reading	The	Art	Of	Troubleshooting	beginning	to	end,	you’ll	have	many
options	from	which	to	choose.	Basically,	do	anything	that	will	distract	yourself	from	the	thing	you’re	stuck	on,	so	when
you	return	to	it	you’ll	see	it	with	a	fresh	pair	of	eyes.	Changing	course	is	also	good	for	those	cases	where	it	would	be,
how	should	we	say,	unprofessional	to	take	any	sort	of	break.	In	the	middle	of	a	crisis	you	can’t	really	tell	a	client	who’s
losing	thousands	of	dollars	every	hour	that	you’ll	be	unavailable	while	you’re	“fractionating.”

Put	It	Down	And	Come	Back	To	It	Later…	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 73

https://www.loc.gov/resource/fsa.8d27970/
http://en.wikipedia.org/wiki/Pomodoro_Technique
https://artoftroubleshooting.com/strategies/

By	the	way,	I	followed	my	own	advice	while	writing	this:	several	times	I	came	to	an	impasse,	put	it	down,	and	came
back	to	it	later.	I’m	sure	it’s	better	for	it.

References:

Header	image:	Vachon,	J.,	photographer.	(1941)	Quitting	time.	National	Electric	Products	Company,	Ambridge,
Pennsylvania.	Man	on	right	is	company	detective.	Pennsylvania,	United	States,	Beaver	County,	Ambridge.	1941.
Jan.	[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2017811806/.
Ap	Dijksterhuis,	“The	Beautiful	Powers	of	Unconscious	Thought,”	APA	Psychological	Science	Agenda,	October,
2009.
“Sleep,	Learning,	and	Memory”.	Harvard	Medical	School	(Division	of	Sleep	Medicine).

Put	It	Down	And	Come	Back	To	It	Later… 	was	originally	published	October	20,	2011.

Notes:

Put	It	Down	And	Come	Back	To	It	Later…	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 74

https://www.loc.gov/item/2017811806/
http://www.apa.org/science/about/psa/2009/10/sci-brief.aspx
http://healthysleep.med.harvard.edu/healthy/matters/benefits-of-sleep/learning-memory

Follow	The	Chain

Everything	is	about	inputs	and	outputs.	I	just	try	to	find	the	spot	along	the	way	where	it’s	derailed.

Mike	McCormick

Many	systems	labor	along	a	linear	path	and	therefore	lend	themselves	to	a	troubleshooting	strategy	I	call:	“follow	the
chain.”	These	“chained	systems”	are	everywhere—most	machines	have	at	least	one	component	that	falls	in	this
category.	That’s	because	the	essence	of	work,	digital	or	analog,	is	transformative:	you	take	an	input,	move	it	around,
make	additions	or	subtractions,	and	ultimately	change	it	in	a	useful	way.	Because	so	many	machines	follow	this	A	→
B	→	C	model,	it’s	only	natural	that	there	is	a	corresponding	troubleshooting	strategy	that	mirrors	this	form.

To	prime	your	mind	for	this	topic,	let’s	first	look	at	some	examples	of	chained	systems:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 75

(image:	Steve	Jurvetson	/	CC	BY	2.0)

1)	The	Krispy	Kreme	doughnut	production	line:	fryer	→	sugar	glazer	→	cooling	tunnel	→	my	stomach.

(image:	Alfred	T.	Palmer	/	Library	Of	Congress)

2)	A	pathway	in	the	electrical	grid:	generating	plant	→	substation	→	your	home.

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 76

http://www.flickr.com/photos/jurvetson/5201796697/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.loc.gov/pictures/resource/fsac.1a35254/

(image:	johncarljohnson	/	CC	BY	2.0)

3)	The	pipes	and	water	heater	that	deliver	hot	water	in	your	home:	cold	water	supply	→	water	heater	→	kitchen	faucet.

Within	transformational	chains	like	these,	the	typical	problem	scenario	is	that	either	a	 station	(place	where	work	is
done)	or	a	conduit	(pathway	that	moves	material)	will	fail.	Station	failures	may	result	in	a	“dumb	passthrough”	situation
where	material	is	still	transmitted,	albeit	unchanged.	For	instance,	if	a	water	heater	is	malfunctioning,	water	may	still
get	to	the	faucet,	but	it	will	be	cold.	Or,	think	about	a	network	firewall	that	fails	and	stops	filtering	data,	instead	passing
all	Internet	traffic	along	to	your	computer.	A	final	tragic	example:	if	that	mesmerizing	sugar	glazer	at	your	local	Krispy
Kreme	runs	out	of	glaze,	the	doughnuts	will	get	to	the	end	of	the	production	line,	though	not	with	their	addictive	magic
coating.	Noooooooo!

Whatever	the	failure	condition,	you’ll	first	want	to	examine	the	result	at	the	 end	of	the	chain	and	work	your	way	back
from	there.	As	mentioned	above,	the	two	typical	scenarios	will	be:

The	output	at	the	end	of	the	chain	will	be	flawed.
There	will	be	no	output.

Since	either	a	station	or	a	conduit	can	be	a	point	of	failure,	you	should	look	for	ways	to	isolate	and	test	them
independently.	You	can	also	measure	the	flow	through	the	system	by	installing	probes	at	key	points	along	the
transformational	chain.	Isolation	and	testing	will	tell	you	what	needs	to	be	replaced,	while	taking	measurements	will
tell	you	what	needs	to	be	isolated	and	tested.	So,	the	“follow	the	chain”	strategy	boils	down	to	these	two	tactics:

1.	 Isolate	and	test	each	component	of	the	chain.
2.	 Measure	the	flow	through	the	system	by	installing	probes.

Point	Break-down

Most	audio/video	setups	are	chain-like	systems	and	provide	a	great	illustration	of	how	to	test	both	stations	and
conduits.	The	main	parts	usually	include	source	components	(DVD	players,	cable	TV	decoders,	video	game	systems,
etc.)	and	intermediate	devices	(switchers/selectors,	pre-amplifiers,	amplifiers,	etc.),	whose	signal	eventually	winds	up	at
an	output	device	(TV,	speakers,	etc.).	In	our	model,	these	are	the	stations	in	the	chain,	because	they	transform	the
audio	or	video	signal	in	some	way.	On	the	way	to	your	eyes	and	ears,	the	way	these	signals	move	is	via	wires	(speaker
wire,	RCA/coaxial/HDMI	cables,	etc.)	or	radio	waves.	These	are	the	conduits	in	our	model.

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 77

http://www.flickr.com/photos/johncarljohnson/320144536/
http://creativecommons.org/licenses/by/2.0/deed.en

Let’s	look	at	the	“follow	the	chain”	strategy	in	action.	In	this	example,	we’ll	examine	a	typical	home	video	setup	with	2
source	components.	But	first,	let’s	set	the	scene	for	our	crisis:	we’re	unable	to	watch	our	favorite	movie	Point
Break,	starring	the	incomparable	Keanu	Reeves.	Using	the	principles	of	measurement	and	isolation,	we’ll	take
advantage	of	standardized	connectors	and	cables	to	find	the	weak	link	somewhere	in	this	chain:	Point	Break	Pure
Adrenaline	Edition	DVD	→	DVD	Player	→	TV.

We	first	recognize	that	the	DVD	disc	is	itself	part	of	the	chain.	Therefore,	we	take	the	 Point	Break	Pure	Adrenaline
Edition	DVD	over	to	a	friend’s	house	to	see	if	it	will	work	over	there.	Four	hours	later,	we	can	confirm	that	it	does.
“Four	hours	later…?”,	you	ask.	Listen,	once	you	get	rolling	with	a	Keanu	Reeves	flick,	you	have	no	choice	but	to	watch
the	movie	the	whole	way	through.	Plus,	there’s	a	ton	of	special	features	included	in	the	Pure	Adrenaline	Edition,
including	8	deleted	scenes	(!)	and	a	featurette	titled	“It’s	Make	Or	Break.”

Here’s	what	our	setup	consists	of:

Diagram:	a	TV	with	two	inputs,	two	source	components,	and	perhaps	the	greatest	movie	of	all	time.	A	crisis
builds	as	we	realize	that	we	can’t	view	this	masterpiece.	We’ll	have	to	troubleshoot…

(image:	©	Jason	Maxham)

In	this	system,	the	cable	that	connects	the	DVD	player	to	the	TV	(Cable	A,	in	red)	is	the	same	type	as	the	cable	used	to
connect	the	video	game	console	to	the	TV	(Cable	B,	in	blue).	Likewise,	the	two	inputs	on	the	TV	are	identical	and	will
both	accept	this	same	type	of	cable.	This	is	a	crucial	realization,	because	it	will	allow	us	to	swap	inputs	and	cables
later	on.	Before	we	get	any	further,	let’s	make	a	list	of	all	our	components	and	what	we	know	about	them:

Part Status

Point	Break	Pure	Adrenaline	Edition
DVD

OK

TV	Display ?

TV	Input	#1 ?

TV	Input	#2 ?

Cable	A ?

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 78

http://www.imdb.com/title/tt0102685/

Cable	B ?

DVD	Player ?

Video	Game	Console ?

Starting	out,	you	can	see	there	are	a	lot	of	question	marks	in	our	list.	Besides	the	disc,	we	haven’t	tested	anything	yet,
so	every	part	is	suspect.	By	the	way,	this	is	a	good	way	to	begin	troubleshooting	any	chained	system:	by	not	assuming
anything!

Now	that	we	understand	the	setup,	we	start	at	the	end	of	the	chain	(the	TV	in	this	case).	We	power	up	the	TV	and	the
DVD	player,	select	TV	Input	#1,	insert	the	Point	Break	Adrenaline	Edition	DVD,	press	play,	and…nothing.	Having
already	eliminated	the	DVD	disc	as	a	suspect,	the	remaining	candidates	for	the	problem	are:	the	TV	display,	TV	Input
#1,	Cable	A,	or	the	DVD	player.	The	problem	must	lie	somewhere	along	this	path!	As	I	just	mentioned,	because	the
connectors,	cables	and	TV	inputs	are	interoperable,	we	can	use	the	video	game	console	and	Cable	B	to	test	various
theories	about	the	source	of	the	failure.

First,	let’s	quickly	verify	the	that	video	game	console	is	working	(that’s	the	pathway	of:	Video	Game	Console	→	Cable
B	→	TV	Input	#2	→	TV).	We	want	to	be	swapping	around	parts	that	have	been	verified	to	function,	so	it’s	imperative
we	determine	their	status	at	the	outset.	We	turn	on	the	video	game	console,	select	TV	Input	#2,	and	everything	works
just	fine.	Great,	now	we’ve	got	a	line	of	known	working	components	that	we	can	use	to	find	the	failed	component	in
the	DVD	player	chain.	We’ll	also	update	our	list	of	working	parts	to	chart	our	progress	as	we	narrow	down	the	list	of
suspects:

Part Status

Point	Break	Pure	Adrenaline	Edition
DVD

OK

TV	Display OK

TV	Input	#1 ?

TV	Input	#2 OK

Cable	A ?

Cable	B OK

DVD	Player ?

Video	Game	Console OK

Ultimately,	we	want	to	work	through	our	entire	list	of	question	marks.	All	things	being	equal,	it	doesn’t	matter	where
you	start.	Of	course,	things	usually	aren’t	equal	and	so	a	good	place	to	begin	is	with	any	“low-hanging	fruit”:	the
easiest	parts	to	test.	It’s	trivial	to	take	Cable	A	from	Input	#1	and	connect	it	to	Input	#2,	so	we’ll	start	there:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 79

Diagram:	testing	the	DVD	player	using	Cable	A	and	TV	Input	#2.
(image:	©	Jason	Maxham)

When	we	hook	up	the	DVD	player	using	Cable	A	and	Input	#2,	it	still	doesn’t	work.	You	may	think	this	is	a	setback,
but	this	is	good	information.	Remember	from	our	earlier	test	that	the	TV	display	and	Input	#2	are	known	to	work.	That
means	we	have	isolated	the	problem	to	either	the	DVD	player	or	Cable	A:	the	problem	must	be	in	one	of	these	two
components.

Another	consequence	of	this	test	is	to	de-prioritize	the	testing	of	Input	#1.	Since	we	haven’t	tested	it,	we	can’t	say	for
sure	that	it	works	and	so	it	must	remain	a	“?”	on	our	list.	However,	remember	the	statistics	involving	multiple	failure
scenarios.	We	know	for	sure	there	is	a	problem	somewhere	within	the	combination	of	the	DVD	player	and	Cable	A.
It’s	possible,	but	highly	unlikely	that	Input	#1	is	also	failing	at	the	same	time.

Let’s	specifically	test	the	hypothesis	that	the	DVD	player	is	malfunctioning.	To	do	this,	we’ll	hook	up	the	DVD	player
using	known	working	parts:	Cable	B	and	Input	#2.	The	only	question	mark	in	this	particular	path	is	the	DVD	player:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 80

https://artoftroubleshooting.com/2012/03/13/same-symptom-different-causes/

Diagram:	testing	the	DVD	player	using	Cable	B	and	TV	Input	#2.
(image:	©	Jason	Maxham)

Keanu	flickers	to	life!	Because	this	configuration	works,	we	can	update	our	table	and	mark	one	more	component	as
“working”:	the	DVD	player.

Part Status

Point	Break	Pure	Adrenaline	Edition
DVD

OK

TV	Display OK

TV	Input	#1 ?

TV	Input	#2 OK

Cable	A ?

Cable	B OK

DVD	Player OK

Video	Game	Console OK

Now	we’re	down	to	just	two	suspects:	Input	#1	and	Cable	A.	Since	it	means	switching	just	one	cable,	let’s	test	Input	#1
like	this:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 81

Diagram:	testing	Input	#1	using	the	DVD	player	and	Cable	B.
(image:	©	Jason	Maxham)

This	configuration	works	too,	and	so	we	now	know	that	Input	#1	is	okay	(this	was	our	hunch,	but	it’s	good	to	know
definitively).	Let’s	update	our	table	one	last	time:

Part Status

Point	Break	Pure	Adrenaline	Edition
DVD

OK

TV	Display OK

TV	Input	#1 OK

TV	Input	#2 OK

Cable	A ?

Cable	B OK

DVD	Player OK

Video	Game	Console OK

We’ve	done	it,	there’s	no	longer	a	mystery	as	to	what’s	preventing	us	from	having	an	awesome	Saturday	night	with	our
favorite	movie.	All	the	components	in	our	system	have	been	verified	to	work,	with	the	exception	of	one.	The	culprit
must	be:	Cable	A.

Measurement	And	Probes

The	other	strategy	for	“follow	the	chain”	troubleshooting	is	to	put	probes	at	key	places	in	the	transformational	chain.
Let’s	imagine	a	hot	water	system	in	an	apartment	building.	Water	comes	from	the	cold	water	supply,	enters	the	water
heater,	is	heated	and	then	flows	to	the	apartments.	Pretty	pedestrian	stuff:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 82

Diagram:	water	heater	system.
(image:	©	Jason	Maxham)

There	are	many	ways	this	system	can	fail,	but	let’s	examine	two	common	scenarios:

1.	 The	heater	malfunctions,	and	the	cold	water	is	simply	passed	through	unchanged	(a	“dumb	passthrough”	scenario).
2.	 A	pipe	bursts	or	leaks,	preventing	water	from	getting	to	an	endpoint	like	a	shower	or	kitchen	sink	(the	“no	output”

situation).

Putting	pressure	and	temperature	monitors	in	place,	we	can	better	understand	what	is	happening	as	water	flows
through	the	system:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 83

Diagram:	water	heater	system	with	temperature	and	pressure	sensors.
(image:	©	Jason	Maxham)

Now,	we	have	insight	into	a	whole	variety	of	failure	scenarios	and	can	make	very	quick	inferences	as	to	their	cause.
Let’s	look	at	a	few	examples	of	some	possible	readings	from	our	gauges	and	the	likely	explanations:

Scenario
Input
Temp.
Sensor

Output
Temp.
Sensor

Input
Pressure
Sensor

Output
Pressure
Sensor

Explanation	/	Troubleshooting	Ideas

#1 60°	F 60°	F 50	psi 50	psi

The	water	heater	is	just	passing	the
water	through	without	doing	anything:
the	input	temperature	equals	the
output	temperature.	Is	the	heater
turned	on?	What’s	the	thermostat	set
at?

#2 68°	F 68°	F 0	psi 0	psi

There’s	no	water	pressure	and	the
temperature	is	equal	to	room
temperature.	Has	the	water	supply	been
shut	off?	Did	you	forget	to	pay	your
water	bill?

#3 60°	F 60°	F 50	psi 30	psi

The	loss	of	pressure	means	there’s	a
broken	pipe	or	the	tank	is	leaking.
There	may	be	flooding!	Our	gauges
allow	us	pinpoint	a	leak	somewhere
between	Pressure	Sensor	#1	and
Pressure	Sensor	#2.	That	narrows
things	down	considerably.

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 84

#4 60°	F 120°
F

50	psi 50	psi

Normal	operation.	The	input	pressure
is	equal	to	the	output	pressure.	The
water	temperature	goes	from	cold	(60°
F)	on	the	input	to	hot	(120°	F)	on	the
output.	This	is	what	a	water	heater	is
supposed	to	do!

Do	you	see	how	adding	these	4	gauges	has	given	us	a	much	better	understanding	of	how	this	system	is	functioning?
They	can	show	us	exactly	where	and	what	to	look	for	when	investigating	a	problem.	Four	critical	parts	of	our	water
flow	chain	are	now	being	monitored	and	we’ll	reap	the	benefits	when	we	need	to	troubleshoot.

Any	weak	links?
(image:	Taylor	S	/	CC	BY-ND	2.0)

Use	Your	Eyes

Sensors	and	gauges	are	great,	but	there	are	many	cases	where	the	process	chain	can	be	 visually	inspected	(remember
the	lessons	of	“Listen	Up”:	the	importance	of	being	engaged	with	the	world	around	you	and	tuned	in	to	your	senses).
Back	to	the	Krispy	Kreme	production	line:	you	wouldn’t	need	a	“glazing	sensor”	to	tell	you	that	the	donuts	aren’t	being
glazed.	You	can	see	and	taste	it.

References:

Header	image:	New	Canaan	Electrification	–	Wiring	Diagram	of	Electrical	Apparatus. 	Electrical	Railway	Journal.
Volume	33,	Number	20.	May	15,	1909.	Pg.	901.	Retrieved	from	the	Internet	Archive.

Follow	The	Chain	was	originally	published	November	9,	2011.

Notes:

Follow	The	Chain	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 85

http://www.flickr.com/photos/110775795@N07/11520091736/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
https://artoftroubleshooting.com/2011/11/01/listen-up/
https://archive.org/stream/electricrailway331909newy/electricrailway331909newy#page/901/mode/1up

Bare	Bones:	Back	To	The	Basics

You	don’t	know	what’s	useless	without	first	thinking	about	it.

Alex	Chaffee

I	used	to	love	assembling	my	own	computers.	I	say	“used	to”	because	somewhere	between	my	first	and	the	200th,	the
love	has	grown	cold.	It	took	a	long	time,	but	the	novelty	eventually	wore	out.	Now,	I’m	definitely	a	“have	it	show	up
in	a	box	and	just	plug	it	in”	kinda	guy.	Also,	the	difference	between	a	fun	hobby	and	the	“grind	it	out”	nature	of	doing
it	for	work	was	partly	to	blame.	We	were	über-thrifty	at	Discovery	Mining	and	I	had	an	insatiable	thirst	for	computer
hardware	at	the	time,	so	we	built	our	first	few	computer	clusters	by	hand.	However,	it	wasn’t	long	before	we	had
outsourced	this	function:	we	simply	couldn’t	have	scaled	fast	enough	if	we	had	continued	to	build	our	own	computers.
They	never	said	it	out	loud,	but	I	also	think	my	team	was	grateful	for	the	change:	for	our	first	couple	of	builds,	even	the
CFO	was	installing	CPUs	and	RAM	in	our	make-shift	assembly	line!

For	the	sake	of	this	article,	I	will	mentally	revisit	those	bygone	days	of	hardware	bliss	and	try	to	convey	the	geek-tastic
pleasure	I	would	get	from	poring	over	lists	of	parts.	I	loved	researching	and	choosing	the	components:	the

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 86

http://en.wikipedia.org/wiki/Computer_cluster

motherboard,	the	RAM,	the	hard	drive,	etc.	In	general,	I’m	really	into	performance	statistics,	whether	it’s	frames	per
second,	horsepower,	watts	per	channel,	or	sprinkles	per	square	inch	(donuts).	After	my	orgy	of	product	research	was
over,	I’d	finally	order	the	parts	and	then	anxiously….wait…for	them	to	arrive.	Since	this	was	a	“race	to	the	bottom”
where	price	was	concerned,	I	used	the	sketchiest	of	Internet	vendors,	the	kind	of	places	that	were	probably	selling	your
credit	card	number	to	the	Mafia.	Therefore,	at	least	one	component	would	take	weeks	to	arrive	and	hold	up	the
assembly.	When	all	the	parts	would	finally	show	up,	I	was	itching	to	build	the	system.

When	that	last	part	arrived,	I’d	quickly	assemble	the	computer—for	all	the	waiting	that	preceded,	it	never	took	long.
Then	came	the	most	exciting	part:	booting	up	the	system	for	the	first	time.	However,	I	can’t	tell	you	how	many	times
my	expectations	were	deflated	like	a	pricked	balloon	when	I	pressed	the	power	button	and…nothing	happened.	This
occurred	a	lot,	until	I	became	one	with	the	Universe	and	discovered	a	troubleshooting	strategy	I	call	“Bare	Bones”	(I’ve
also	heard	it	called	“back	to	basics”).	The	idea	is	simple	and	effective:	you	can	often	remove	or	disable	unnecessary
components	in	order	to	get	a	machine	to	work.

The	owner	of	this	car	clearly	understands	the	meaning	of	“bare	bones.”	Doors	and	side	panels?	Optional.
(image:	Mobilus	In	Mobili	/	CC	BY	2.0)

Let’s	say	you	have	assembled	the	following	components	for	your	sweet	new	gaming	rig:

Power	supply
Motherboard
CPU
RAM
Video	card
Sound	card
RAID	card	(controls	the	hard	drives)
Hard	drives
Network	card
Keyboard
Mouse
Monitor
DVD	drive

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 87

http://www.flickr.com/photos/mobili/4891218621/
http://creativecommons.org/licenses/by/2.0/deed.en

You	put	it	all	together	and	press	the	power	button.	It	doesn’t	work,	and	you	experience	the	sinking	feeling	of	“did	I	just
waste	all	this	money	assembling	a	large	pile	of	useless	computer	parts?”

Don’t	fret:	just	remember	that	not	ALL	of	these	things	are	required	for	the	computer	to	work	in	its	most	 primitive	state.
In	fact,	less	than	half	of	these	components	are	needed	to	get	the	computer	to	boot.	We	can	easily	cut	the	above	list
down	by	over	half	to	a	list	of	the	truly	required	components:

Power	supply
Motherboard
CPU
RAM
Video	card
Monitor

Usually,	when	I	would	unplug	or	remove	all	the	extraneous	components,	leaving	just	the	essentials,	IT	WOULD
BOOT!

Even	more	subtly,	you	usually	don’t	need	all	of	a	particular	type	of	required	component.	For	instance,	you	might	have
bought	4	sticks	of	RAM,	but	the	computer	will	boot	with	one.	Remember,	for	the	“bare	bones”	strategy,	you	want	the
absolute	minimum	configuration	which	will	work.	If	that	means	installing	just	one	hard	drive	(as	opposed	to	the	4	you
eventually	want	to	eventually	use),	just	use	one.

Now	that	you’ve	got	it	to	boot,	you	can	go	ahead	and	start	adding	in	the	rest	of	the	components,	one-by-one,	to	see
which	of	them	(and,	there	may	be	more	than	one)	are	causing	the	malfunction.

Bare	Bones	Everywhere

Bare	Bones	is	a	universal	principle	that	applies	to	any	machine	that	has	subsystems	or	extra	components	that	aren’t
needed	for	basic	operation.	In	our	advanced	technological	world,	there’s	so	many	examples	of	things	that	have
amazing	“bells	and	whistles”	that,	while	nice	to	have,	simply	aren’t	needed	for	basic	operation.	In	the	context	of	the
automotive	industry,	the	number	of	features	that	car	companies	deliver	gets	longer	with	each	new	model	year.	Think
about	a	modern	car	with	GPS	navigation,	power	windows,	heated	seats,	a	10-speaker	surround	sound	system,	etc.	The
list	of	truly	Bare	Bones	equipment	(steering	wheel,	engine,	accelerator,	brake,	4	wheels,	etc.	–	see	photo	above)	has
come	to	represent	a	smaller	and	smaller	percentage	of	the	components	in	your	average	car.	Yet	the	strategy	of	reverting
to	these	basic	functions	remains	available	to	you,	should	you	need	to	turn	to	them	for	troubleshooting	purposes.

Of	course,	“basic	operation”	depends	on	how	you’re	using	the	system.	Let’s	say	you	have	a	refrigerator	truck	that	is
inoperable	and	you	can	get	it	to	run	by	going	Bare	Bones	and	disabling	the	refrigeration	unit.	If	you’re	hauling	meat
around,	clearly	the	refrigeration	unit	is	a	“must	have”	and	therefore	the	truck	won’t	be	eligible	for	use	in	that	capacity.
That’s	okay,	because	Bare	Bones	can	be	used	as	a	triage	technique:	if	the	truck	is	broken	down	in	the	middle	of	rush-
hour	traffic,	clearly	your	main	goal	is	simply	driving	it	to	the	repair	shop.	In	that	case,	disabling	the	refrigeration	unit	in
return	for	“basic	operation”	would	be	a	big	win!

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 88

Flaming	tomatoes:	tasty	and	good	to	remember	if	you’re	a	pilot.
(image:	Jem	Stone	/	CC	BY	2.0)

Bare	Bones	In	Aviation

As	a	pilot,	I’ve	encountered	the	principle	of	Bare	Bones	in	aviation,	codified	in	manufacturer	manuals	and	FAA
regulations.	As	strange	and	dangerous	as	it	may	sound,	not	everything	on	an	airplane	is	required	to	work	before	you	go
flying!	(Although,	keep	in	mind	that	“minimum	requirements”	and	“good	idea”	are	not	necessarily	the	same	thing.)
Studying	to	take	the	pilot	exam,	I	learned	the	mnemonic	“TOMATO	FLAMES”	to	remember	what	must	be	minimally
working	in	order	to	legally	fly	in	clear	conditions	(VFR)	during	the	daytime:

Tachometer
Oil	pressure	gauge
Manifold	pressure	gauge
Altimeter
Temperature	gauge	(liquid-cooled	engines)
Oil	temperature	gauge	(air	cooled	engines)
Fuel	gauge
Landing	gear	position	indicator
Airspeed	indicator
Magnetic	compass
ELT	(emergency	locator	transmitter)
Seat	belts

Mistakes	in	aviation	are	costly,	so	the	list	of	what	can	be	broken	is	also	strictly	proscribed	in	the	confusingly	named
“Minimum	Equipment	List”	(MEL),	specific	to	each	aircraft.	Here’s	an	example	from	the	Cessna	182’s	similarly-used
“Kinds	of	Operations	Equipment	List,”	which	describes	what	must	be	working	if	you	want	to	fly	in	various	conditions:

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 89

http://www.flickr.com/photos/jemstone/213070780/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Visual_flight_rules
http://en.wikipedia.org/wiki/Cessna_182

Excerpt:	“Kinds	of	Operations	Equipment	List”	for	the	Cessna	182.
(image:	Cessna	182	Pilot	Operating	Handbook)

In	this	excerpt,	you	can	see	that	the	main	airspeed	indicator	is	always	required	(noted	by	a	“1”	in	each	of	the	columns
to	the	left	of	the	entry:	“G1000	Airspeed	Indicator”),	but	the	standby	airspeed	indicator	only	needs	to	be	working	if	you
intend	to	fly	through	clouds	or	in	low	visibility	situations	(IFR).

While	the	“TOMATO	FLAMES”	and	MEL	lists	aren’t	designed	to	be	used	for	troubleshooting	while	flying	(they’re
supposed	to	be	consulted	before	taking	off),	I’ve	read	accounts	of	pilots	going	Bare	Bones	in	emergencies	by	shutting
off	unnecessary	systems	to	conserve	precious	battery	life	or	quell	fires	(e.g.,	turning	off	a	flaming	engine	on	a	multi-
engine	aircraft).	Whether	on	the	ground	or	in	the	sky,	the	principle	is	the	same:	not	every	subsystem	is	required	for	a
machine	to	function.	Conversely,	the	corollary	is	also	true:	a	malfunctioning	subsystem	may	be	preventing	a	machine
from	functioning	(and	you	may	need	to	shut	it	down	or	remove	it	to	restore	system	operation	as	a	whole).

Bare	Bones	In	The	Digital	Domain

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 90

http://en.wikipedia.org/wiki/Instrument_flight_rules

I	find	that	the	Bare	Bones	strategy	has	its	fullest	expression	in	the	digital	world.	That’s	because	stripping	an	electronic
device	down	to	its	bare	essentials	is	usually	just	a	matter	of	a	few	keystrokes.	You	can	go	from	a	very	complicated
configuration	like	this:

pager	lines	24
mtu	inside	1500
mtu	outside	1500
no	failover
no	asdm	history	enable
arp	timeout	14400
nat	(inside)	0	access-list	inside_nat0_outbound
access-group	101	in	interface	outside

to	Bare	Bones	by	simply	adding	something	to	the	front	of	every	line	(sample	commands	taken	from	a	Cisco	network
router	configuration).	In	the	parlance	of	programmers,	this	is	called	“commenting	out”	a	line,	an	act	that	renders	the
command	inoperable:

!---	pager	lines	24
!---	mtu	inside	1500
!---	mtu	outside	1500
!---	no	failover
!---	no	asdm	history	enable
!---	arp	timeout	14400
!---	nat	(inside)	0	access-list	inside_nat0_outbound
!---	access-group	101	in	interface	outside

Removing	items	from	a	digital	device’s	configuration	is	typically	very	easy.	Whether	it’s	putting	a	“!”	“#”	or	“/*”	at	the
beginning	of	every	line,	or	a	clicking	a	checkbox	on	a	web-based	form,	the	principle	is	the	same.	Being	able	to	turn	on
and	off	functionality	with	just	a	few	keystrokes	is	a	huge	advantage	over	mechanical	systems,	where	disabling
functionality	usually	requires	a	lot	more	work	(and	the	turning	of	wrenches	and	screwdrivers).

A	very	fruitful	strategy	is	to	bring	a	device	back	to	its	simplest	state	and	then	add	back	in	your	configuration	options
one	by	one:

pager	lines	24
!---	mtu	inside	1500
!---	mtu	outside	1500
!---	no	failover
!---	no	asdm	history	enable
!---	arp	timeout	14400
!---	nat	(inside)	0	access-list	inside_nat0_outbound
!---	access-group	101	in	interface	outside

until	the	offending	option	that	is	preventing	the	machine	from	working	has	been	identified.

Conclusion

I	think	the	importance	of	Bare	Bones	as	a	troubleshooting	technique	will	only	continue	to	grow.	The	prevalence	of
“feature	bloat”	in	mass-produced	products	seems	to	only	increase	as	time	marches	on.	Tight	QA	budgets	don’t	often
allow	for	every	feature	permutation	to	be	covered	in	a	product’s	testing	phase.	Remembering	that	a	machine	has	both
critical	and	extraneous	equipment	allows	you	to	bypass	crippling	interplay	between	the	two	by	stripping	a	machine
down	to	its	bare	essentials.

References:

Header	image:	Historic	American	Buildings	Survey,	C.	(1933)	Edgewood	Farm,	Log	Shed	with	Lean-To.	Clover,
Halifax	County,	Virginia,	1933.	Documentation	Compiled	After.	[Photograph]	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/va1892/.

Bare	Bones:	Back	To	The	Basics 	was	originally	published	November	15,	2011.

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 91

https://www.loc.gov/item/va1892/

Notes:

Bare	Bones:	Back	To	The	Basics	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 92

Does	It	Need	To	Be	Fixed?

In	a	lot	of	the	problems	I	run	into,	it’s	“I	can’t	fix	this.”	So,	I	log	the	problem	and	toss	it...and	then	I	need	to	work
around	it.

Karl	Kuehn

When	you’re	helping	someone	fix	a	broken	machine	and	it	seems	like	a	resolution	won’t	be	forthcoming	soon,	one	of
the	best	questions	you	can	ask	is:	“What	are	you	trying	to	accomplish?”	They	may	look	at	you	funny	and	say	“Duh!	I
want	to	fix	this	stupid	thing!”	Of	course	they	do,	but	why?	What	means	to	an	end	is	this	machine	providing?	Identifying
and	focusing	on	the	desired	outcome	will	make	finding	workarounds	easier.

Given	that	it’s	much	better	to	problem-solve	in	a	low	stress	environment,	where	you	have	ample	time	and	no	one’s
breathing	down	your	neck,	the	troubleshooter	has	a	tremendous	incentive	to	provide	alternatives.	The	strategies
and	virtues	presented	in	The	Art	Of	Troubleshooting	will	help	you	be	that	superstar	under	pressure,	but	as	exciting	as
that	may	be,	I	think	you	will	prefer	the	low-pressure	option	for	your	day-to-day	routine.

Always	frame	alternatives	with	the	sentiment	of	“I’m	on	your	side,	I’m	committed	to	helping	you	solve	your	problem,
and	I’m	trying	to	get	you	back	in	the	game	as	quickly	as	possible.”	If	you’re	required	to	help	(i.e.,	it’s	in	your	job

Does	It	Need	To	Be	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 93

https://artoftroubleshooting.com/strategies/
https://artoftroubleshooting.com/virtues/

description),	people	may	think	you’re	trying	to	avoid	doing	your	job	by	offering	a	workaround.	Showing	you	have	their
best	interests	in	mind,	along	with	a	candid	explanation	of	the	situation,	is	typically	the	best	combination:	“Listen,	I’m
going	to	be	totally	honest	with	you,	I	don’t	know	what’s	wrong	and	it	could	take	a	whole	day	to	figure	it	out…”	Most
people	will	gladly	accept	a	workaround	if	they	know	it’s	their	only	option	to	keep	moving	forward.

Original
Problem Desired	Outcome Possible	Workaround

“The	printer	in
my	cubicle	is
broken…”

“I	want	to	print	my
presentation	for
tomorrow’s	meeting.”

“Can	you	use	the	printer	in	the
conference	room	instead?”

“My	car	won’t
start…”

“I	need	to	get	to
work.”

“Can	you	take	a	cab,	ride	the	bus	or
get	a	lift	from	a	co-worker?”

“The	magical
Interwebs	are
broken…”

“I	need	to	send	this
email.”

“Can	you	go	across	the	street	to	the
cafe	and	use	their	Internet	connection
to	send	your	email?”

“The	lights
won’t	turn	on…”

“I	need	to	see	to	be
able	to	do	my	job.”

“Can	you	temporarily	move	to	a	place
where	there’s	more	light?”

Must	We?

Asking	“Do	we	have	to	fix	this?”	isn’t	evasion,	it’s	a	reminder	that	the	way	things	were	is	not	the	same	as	the	way
things	should	or	could	be.	The	underlying	premise	of	troubleshooting	is	that	we	want	to	get	back	to	where	we	started
from,	to	the	way	the	world	was	before	a	breakdown	occurred.	But,	just	as	in	life,	going	back	to	the	way	things	were
isn’t	always	a	good	idea.	After	the	storm	had	passed,	I’ve	often	been	grateful	that	a	breakdown	occurred.	I	may	not
have	appreciated	how	the	introspection	was	thrust	upon	me,	but	failures	were	invitations	to	reexamine	our	systems	and
procedures.

Thankfully,	repair	is	optional.
(image:	Library	of	Congress)

As	a	troubleshooter,	you’re	usually	focused	on	the	problem	to	the	exclusion	of	all	else.	It	may	not	enter	your	mind	that
your	time	might	be	better	spent	NOT	fixing	it.	Woah…not	fix	it?!	That’s	not	a	nod	to	laziness,	but	simply	an	invitation
to	consider	devoting	your	scarce	resources	and	energy	to	something	better.	Let’s	examine	the	scenarios	where	repair	is
suboptimal:

A	Workaround	Is	Better

Does	It	Need	To	Be	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 94

https://www.loc.gov/resource/npcc.07994/

While	investigating	failures,	I	often	see	things	that…just	don’t	compute.	“Why	did	they	do	it	this	way?”	is	the	question
associated	with	these	moments.	Candidly,	I’ll	admit	that	it’s	frequently	“Why	did	I	do	it	that	way?”	A	machine	is
installed	to	do	a	particular	job,	its	place	and	specifications	fixed,	but	the	world	keeps	on	changing.	Later	on,	when	it
finally	breaks	down,	what	it	is	was	doing	or	how	it	was	doing	it	might	not	make	sense	anymore.

For	this	reason,	you’ll	often	discover	redundancies	and	unnecessary	steps	while	troubleshooting.	These	will	be
opportunities	to	bypass	the	broken	part	or	machine	entirely!	“Why	is	our	Internet	traffic	flowing	through	this	broken
switch	and	then	through	the	router?	If	I	patch	it	directly,	I	can	restore	service	and	eliminate	a	single	point	of	failure.”

But	be	careful,	my	legion	of	White	Knights	who	ride	in	to	save	the	day!	Trying	to	be	clever	in	the	heat	of	the	moment
is	like:

…trying	to	take	the	master	carpenter’s	place.	When	you	handle	the	master	carpenter’s	tools,	chances	are	that
you’ll	cut	your	hand.

Tao	Te	Ching	(verse	74)	1

Of	course,	this	doesn’t	apply	if	you	just	happen	to	be	a	master	carpenter.

When	I	first	discovered	that	I	could	simply	decline	fixing	a	downed	system	because	I	had	found	a	better	workaround,	I
thought	I	was	pretty	cool.	But,	reality	always	has	the	last	word.	The	system	you’re	working	on	was	designed,	installed,
or	assembled	in	a	certain	way,	usually	for	a	good	reason:	can	you	truly	say	you’ve	been	privy	to	all	of	the	discussions,
design	meetings,	prior	incidents,	etc.	which	resulted	in	the	system	you’re	now	trying	to	modify	on-the-fly?

That’s	why,	if	the	stakes	are	high,	this	option	is	only	for	the	10th-degree-blackbelt-who-Chuck-Norris-calls-for-help
kinda	superhero.	Maybe	you	do	know	this	system	like	the	back	of	your	hand.	Maybe	you’ve	been	at	every	meeting,
been	involved	in	every	design	decision	and	understand	why	the	resulting	system	looks	like	it	does.	If	you’re	that	sure,
go	ahead	and	pull	the	trigger,	Rambo.

In	a	low-pressure	situation,	be	open	to	improvisation.	Again,	you	may	discover	a	workaround	that	is	superior	to	the
original	and	doesn’t	require	fixing	the	broken	system!

You	Were	Planning	To	Upgrade	Anyway

If	you’ve	been	waiting	for	an	excuse	to	upgrade,	there’s	no	better	time	than	after	a	failure.	Often,	the	broken	system
may	not	be	able	to	be	repaired,	at	least	not	in	a	reasonable	amount	of	time.	You	needed	downtime	to	upgrade?	Again,
you’ve	got	it	on	a	silver	platter.	Seize	the	opportunities	that	life	presents!	Just	make	sure	you	employ	sound	procedures
to	ensure	the	upgrade	goes	successfully,	especially	if	it’s	on	the	spur	of	the	moment.	A	data	collection	program,
regression	tests,	or	checklists	are	all	great	ways	to	verify	everything	went	smoothly.

Swap	It

You	don’t	have	to	impress	me	with	your	troubleshooting	skills.	Grab	the	spare	(you	do	have	spares,	right?),	replace	the
failed	system,	and	move	on.	Depending	on	the	severity	of	the	problem,	you	may	not	be	able	to	troubleshoot	your	way
out.	If	you	want	to	find	the	root	of	the	problem,	give	yourself	the	luxury	of	doing	it	later,	when	the	pressure’s	off.	Or,
send	it	back	to	the	manufacturer	and	let	them	figure	out	what	went	wrong.

Always	Have	A	“Plan	B”

If	you’re	going	to	pursue	any	of	these	“don’t	fix	it”	strategies,	I	highly	recommend	doing	it	as	a	parallel	path	to	your
troubleshooting	efforts.	Form	a	second	team	to	investigate	and	implement	your	workaround.	There’s	nothing	like	a	little
healthy	competition	and	it	respects	the	maxim:	“Always	have	a	backup	plan.”

References

Header	image:	“Papahānaumokuākea	Marine	National	Monument	where	the	Hoei	Maru	shipwreck	lies	in	the
shallow	waters	of	Kure	Atoll.”	NOAA’s	Office	of	National	Marine	Sanctuaries.

Does	It	Need	To	Be	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 95

https://www.flickr.com/photos/onms/27657248416/

1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	74.

Does	It	Need	To	Be	Fixed? 	was	originally	published	November	22,	2011.

Notes:

Does	It	Need	To	Be	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 96

The	Phone	Is	Ringing,	So	Answer	It

Read	the	error.

Alex	Chaffee

How	many	times	have	I	seen	even	seasoned	technicians	dismiss,	ignore,	or	forget	to	seek	out	relevant	error	messages?
A	lot!	So	many	machines	in	use	today	will	tell	you	exactly	what	is	wrong	(should	you	be	bothered	to	listen).	It	doesn’t
take	a	rocket	scientist	to	tune	in	to	this	information,	but	you	may	have	to	snap	out	of	the	trance	you’re	in	to	recognize
what	you’re	missing.

An	example	from	my	work	life:	I	was	with	a	co-worker	and	we	were	trying	to	look	at	some	data	on	a	portable	storage
device.	After	plugging	it	in,	it	was	clear	it	wasn’t	working	because	the	drive	wasn’t	showing	up	in	the	filesystem
browser.	A	few	error	messages	popped	up	on	the	screen,	which	my	friend,	on	auto-pilot,	quickly	clicked	to	dismiss.
Like	a	pop-up	box	removal	ninja,	he	killed	the	messages	so	fast	that	I	could	barely	see	them:

Me:“What	did	that	say?”
Co-worker:	“I	dunno,	it	was	in	the	way…”

Another	error	message	popped	up	and	I	grabbed	the	mouse,	insisting	that	we	read	it.	The	alert	said	that	one	of	the	hard
drives	in	the	array	was	missing.	Hmm…that’s	interesting.	We	opened	up	the	enclosure	and,	sure	enough,	found	a	disk
that	wasn’t	seated	properly.	We	reseated	the	drive	and	everything	returned	to	normal.	The	device	was	screaming	out
what	the	problem	was,	but	we	weren’t	listening!

The	Phone	Is	Ringing,	So	Answer	It	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 97

You	should	answer	that.
(image:	Shannon	Moore	/	CC	BY	2.0)

The	lesson	is	simple:	unless	you	have	a	good	reason	not	to,	a	good	place	to	start	any	troubleshooting	exercise	is	with	a
machine’s	own	error	codes.	If	the	system	has	built-in	diagnostics	that	will	tell	you	exactly	what	is	wrong,	why	aren’t
you	using	them?	Remember,	the	Master	Troubleshooter	is	looking	to	find	the	shortest	path	to	a	resolution.	Not	using
the	low-hanging	fruit	of	built-in	diagnostics	is	the	equivalent	of	walking	from	LA	to	New	York,	after	turning	down	a
ride	on	a	friend’s	rocket	ship.	Leave	the	hard	path	of	self-denial	to	your	personal	quest	for	Enlightenment.	When	it
comes	to	troubleshooting,	take	the	easy	way	out	and	save	your	energy	for	the	really	tough	problems.

In	essence,	this	is	just	another	reminder	of	the	importance	of	 being	present	when	you	are	troubleshooting.	I’ve	been
over	the	importance	of	listening	to	people,	so	I’ll	simply	add:	listen	to	your	machines	too!

References:

Header	image:	Opening	of	New	Phone	Line,	1/17/27.	1927.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2016842708/.

The	Phone	Is	Ringing,	So	Answer	It	was	originally	published	December	7,	2011.

Notes:

The	Phone	Is	Ringing,	So	Answer	It	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 98

http://www.flickr.com/photos/wildtexas/5169842275/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2013/04/16/be-present/
https://artoftroubleshooting.com/2011/11/01/listen-up/
https://www.loc.gov/item/2016842708/

Duplicate	The	Problem

There	was	a	sunroof	on	a	brand-new	vehicle.	It	wouldn’t	work	and	it	was	in	the	shop	a	number	of	times.	It	made
no	rhyme	or	reason	and	was	completely	intermittent.	They	sent	out	a	factory	rep	and	he	said	do	this,	this,	and	this.
He	told	me	to	check	the	resistance	to	the	grounds.	We	tightened	things	up	and	got	the	resistance	down	and	he
was	sure	we	had	fixed	it.	He	leaves	and	says,	“I’ll	write	it	up	as	fixed	cause	I	know	that’s	going	to	take	care	of	it.”	I
was	very	skeptical:	the	test,	in	my	opinion,	was	not	valid.

The	car	had	been	torn	apart	and	I	started	putting	it	back	together	and	the	sill	plate	didn’t	fit	right.	I	pulled	it	up	and
saw	this	little	shiny	copper	spot	underneath	one	of	the	clips	that	held	the	sill	plate	on.	One	of	the	wires	that
controlled	the	sunroof	ran	underneath	the	sill	plate	and	when	you’d	pop	the	sill	plate	back	on,	the	clip	would	hit
the	wire	and	short	it	out.	So,	it	could	be	okay	until	someone	stepped	in	the	back	of	the	vehicle	or	hit	a	bump	on
the	road	or	whatever!	I	shorted	the	wire	just	to	make	sure	and	it	stopped	the	sunroof	from	working.	It	was	just
sheer	luck	that	I	found	it,	because	this	one	piece	didn’t	fit	the	way	it	should.

Dan	McCormick

The	gold	standard	for	troubleshooting	is	duplication	of	the	problem.	Simply	put,	duplication	is	the	ability	to	reliably
recreate	a	particular	failure	condition.	The	word	“reliable”	is	key:	it	should	be	something	you	can	summon	forth	on
demand	every	time.	Duplication	is	the	beginning	of	a	simple	but	powerful	strategy	that	includes	changing	variables

Duplicate	The	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 99

one	at	a	time	until	you	find	the	offending	part,	subsystem,	or	configuration	setting.	Reliable	duplication	gives	purchase
to	your	attempts	at	isolating	the	cause,	allowing	you	to	verify	after	each	change	whether	or	not	you’ve	fixed	the
problem.	Reliable	failures	(seems	like	an	oxymoron,	eh?)	make	certain	that,	when	you	make	a	change	and	it	begins	to
work,	you’ve	found	the	cause!

Please	note,	the	machine	must	be	nearly	working	for	duplication	to	be	useful.	To	illustrate	why,	imagine	a	car	that	has
sat	unused	for	50	years.	When	you	go	to	start	it,	nothing	happens.	You	try	again,	with	the	same	result.	Feeling	good,
you	give	it	a	try	a	third	time	and	a	smile	creeps	across	your	face.	“Aha!”,	you	think,	“I’ve	just	duplicated	the	problem!”
Yes,	you	have,	but	I’m	afraid	that	it	won’t	help	you	very	much	in	the	context	of	a	car	that	hasn’t	run	in	50	years.	That’s
because	the	number	of	things	likely	to	be	wrong	is	so	large	that	a	duplication	plus	isolation	strategy	will	only	tell	you
that…nearly	every	single	component	needs	to	be	repaired	or	replaced.	A	project	like	that	is	much	closer	to
manufacturing	(making	something	work	for	the	first	time)	than	troubleshooting.

Contrast	the	above	scenario	with	a	car	that	stopped	working	5	minutes	ago.	And,	its	state	of	not	working	is	100%
reliable.	Now	we’re	talking	about	a	situation	where	duplication	will	be	useful.	A	machine	that	stopped	working
recently	is	likely	to	have	only	a	few	things	wrong.	This	is	the	type	of	scenario	where	you	can	start	to	make	progress
using	a	duplication	and	a	“change	just	one	thing	at	a	time”	strategy.

Duplication	is	a	powerful	force,	but	it	won’t	help	you	fix	this…
(image:	barz51	/	CC	BY	2.0)

Dimensions	For	Duplication

If	the	failure	scenario	is	robust,	simply	“trying	it	again”	will	be	the	only	thing	required	to	achieve	duplication.
However,	let’s	say	that	your	attempts	at	duplication	are	initially	thwarted.	Before	you	jump	to	the	conclusion	that	it’s
an	intermittent	problem,	give	some	thought	to	recreating	the	conditions	that	were	present	during	the	original	failure.
This	may	include	the	same:

Time	of	day/week/month/year.
Temperature,	humidity,	and	other	environmental	conditions.
Settings/configuration	options.
For	mechanical	machines:	levels	of	fuel,	fluids,	batteries,	etc.
For	digital	devices:	buffer	levels,	memory	consumption,	amount	of	network	activity,	other	programs	running
alongside,	etc.

Duplicate	The	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 100

http://www.flickr.com/photos/16460291@N06/4732481729/
http://creativecommons.org/licenses/by/2.0/deed.en

Speed/throughput/usage	conditions.
Operators:	if	the	problem	only	happens	when	Joe	is	at	the	controls,	then	have	Joe	present	during	troubleshooting	to
do	everything	the	same	way	(or	have	him	show	you	so	you	can	imitate).

Looking	over	this	list,	you	may	realize	that	you	don’t	know	what	was	happening	within	these	categories	during	the
failure.	You	may	also	come	to	the	conclusion	that	you	don’t	even	know	what	the	normal	operating	range	is	for	these
parameters	in	your	environment.	That	may	be	an	indication	that	it’s	time	to	start	collecting	data.

For	Better	Or	Worse

While	attempting	to	duplicate,	also	take	notice	of	the	things	that	make	a	problem	better	or	worse.	Especially	when	a
failure	is	qualitative	(i.e.,	“too	much”	or	“not	enough”),	you	need	to	pay	attention	to	this	aspect	of	problem	replication.
In	my	interview	with	Jamie,	a	former	motorcycle	mechanic,	this	technique	came	up	while	discussing	electrical
systems:

If	it’s	an	electrical	problem,	I’ll	try	to	cordon	off	circuits	that	might	affect	what	I’m	focusing	on.	Like	if	it’s	an
ignition	problem	and	I’m	not	getting	the	spark	I	want.	Well,	let’s	disconnect	the	headlight,	because	that	draws	a
fair	amount	of	juice.	Let’s	turn	off	the	turn	signals,	or	let’s	turn	them	on	and	see	if	the	problem	increases.
Removing,	but	also	adding.

Jamie	Karrick

You	may	be	drawn	to	things	that	make	a	symptom	better,	but	things	that	make	a	symptom	worse	are	just	as	valuable	to
discover!	Both	provide	valuable	information	and	show	a	dependency	in	action.	When	you	find	a	knob	you	can	twist
that	affects	the	problem,	good	or	bad,	you	are	well	on	your	way	to	understanding	the	issue.

Time,	An	Important	Dimension

What	is	recent	is	easy	to	correct.

Tao	Te	Ching	(verse	64)	1

If	a	long	period	of	time	passes	after	a	machine	last	worked,	duplication	will	likely	be	an	inefficient	troubleshooting
strategy.	Entropy	will	transform	any	working	system	into	a	pile	of	worthless	parts	over	the	long	run:

Duplicate	The	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 101

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/

Graph:	The	degradation	of	an	unmaintained	system	over	time.	Left	to	sit,	a	machine	will	have	so	many
problems	that	duplication	will	no	longer	be	a	viable	strategy	for	troubleshooting.

(image:	©	Jason	Maxham)

I	really	want	to	impress	upon	you	that	time	is	a	major	factor	in	all	aspects	of	troubleshooting.	As	a	limited	resource,
time	is	something	you	need	to	budget	carefully	while	searching	for	a	solution.	Time	also	affects	the	likelihood	of
problems	(they	increase	with	the	age	of	the	machine,	as	shown	in	the	graph	above)	and	the	resources	available	to	you
(these	decrease	with	the	passage	of	time,	as	shown	in	the	graph	below):

Graph:	especially	for	mass-produced	machines,	the	resources	available	to	help	you	diagnose	and	fix	a
problem	will	increase,	peak,	and	then	begin	a	long	decline.	At	first,	a	machine	is	widely	adopted	and	the

resources	for	repair	increase	in	response	to	market	demand.	Later,	the	machine	is	replaced	by	newer	models
and	outmoded	by	new	technologies,	and	available	troubleshooting	resources	begin	to	decline.

(image:	©	Jason	Maxham)

Over	time,	resources	available	to	help	you	make	a	fix	can	vary	widely.	Number	among	these	resources:	community
knowledge,	technician	know-how,	manuals,	tools,	and	spare	parts.	See	the	graph	above	for	a	visual	representation	of
this	phenomenon:	with	some	lag,	shortly	after	a	machine	is	first	produced	there	will	be	a	peak	in	the	resources
available	to	help	you	troubleshoot.	Take	the	Ford	Model	T	as	an	example:	between	1908	and	1927	over	15	million
units	of	this	iconic	car	were	produced.	At	the	very	moment	the	first	one	rolled	off	the	assembly	line	in	1908,	there
probably	weren’t	that	many	people	who	knew	how	to	fix	them.	However	by	1927,	when	there	were	millions	of	these
cars	on	the	road,	it’s	safe	to	say	that	nearly	every	auto	mechanic	working	in	the	USA	knew	something	about	how	to
repair	the	Model	T.	They	were	everywhere!	Not	only	that,	but	the	tools	and	spare	parts	required	were	likewise
ubiquitous:	the	simple	economics	of	millions	of	these	cars	requiring	maintenance	meant	that	the	market	met	this
demand	with	abundant	resources.

Duplicate	The	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 102

http://en.wikipedia.org/wiki/Ford_Model_T

Finding	slack-jawed	admirers	is	the	easy	part.	Spare	parts	and	know-how,	not	so	much…
(image:	Carol	M.	Highsmith	/	Library	of	Congress)

Fast-forward	to	today	and	how	many	people	know	how	to	repair	a	Model	T?	How	do	you	get	parts?	It’s	possible,	but
only	a	very	small	group	of	enthusiasts	(antique	car	collectors	and	restorers)	possess	these	resources.	A	hundred	years
from	now,	you	can	bet	that	this	group	will	be	even	smaller!	Anything	can	be	repaired	if	you	can	throw	enough
resources	at	the	problem,	but	realize	that	“fixing”	a	very	old	system	will	put	you	in	a	role	similar	to	the	original	design
engineers:	prepare	to	pay	the	cost	of	discovering	how	to	make	it	work,	just	like	they	did.

(Continued	in	Part	2:	Failing	To	Fail)

References:

Header	image:	Mydans,	C.,	photographer.	(1935)	Row	of	identical	houses	off	Eastern	Avenue,	in	Cincinnati,	Ohio,
showing	backyard	outhouses.	Ohio	River	Valley	is	in	the	distance.	United	States,	Ohio,	Cincinnati,	Hamilton
County,	1935.	Dec.	[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2017759064/.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	64.

Duplicate	The	Problem	was	originally	published	December	14,	2011.

Notes:

Duplicate	The	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 103

https://www.loc.gov/item/2017881327/
https://artoftroubleshooting.com/2013/02/14/failing-to-fail-duplicate-the-problem-part-2/
https://www.loc.gov/item/2017759064/

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)

Reproducing	it	is	often	the	hardest	part.

Alex	Chaffee

We’ve	already	been	over	“duplicating	the	problem”	as	a	core	strategy	of	the	troubleshooting	process.	However,	if
you’ve	been	in	the	trenches	long	enough,	you	know	that	some	problems	resist	duplication.	During	these	moments,	you
may	shake	your	fist	at	the	heavens	and	shout,	“Why	won’t	you	fail	when	I	want	you	to?!”	Fixing	these	tricky	issues	is
when	you’ll	really	earn	your	pay.	Eventually,	you’ll	appreciate	the	rewards,	both	spiritual	and	material,	of	solving	these
tougher	failures.

The	Black	Box

Let’s	say	that,	despite	your	best	efforts,	you’re	unable	to	reproduce	a	problem.	Ugh.	Well,	there	is	a	class	of
troubleshooting	problems,	simply	known	as	“intermittent.”	They	will	be	difficult	to	duplicate,	even	when	you	have
attempted	to	painstakingly	recreate	the	original	environment	in	which	the	failure	occurred.	Of	course,	you	may
believe	you’ve	set	up	everything	the	same,	but	something	is	different.	And	that	something	is	making	a	difference.

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 104

https://artoftroubleshooting.com/2011/12/13/duplicate-the-problem/

The	Black	Box:	sometimes	you	care	what	goes	on	in	here,	and	sometimes	you	don’t.
(image:	©	Jason	Maxham)

Based	on	my	experience,	the	inability	to	recreate	a	failure	is	typically	a	variation	of	what	I	call	the	Black	Box	Problem.
You	may	have	heard	the	term	“black	box”	thrown	around	in	the	world	of	engineering	and	product	design:	it	may	be
used	as	both	a	damning	slur	or	a	coveted	feature,	depending	on	whether	you’re	hands	are	covered	in	grease	while
cursing	or	reading	a	slick	marketing	brochure.

A	Black	Box	system	takes	input	on	one	end	and	magically	produces	the	desired	output	on	the	other	end.	Of	course,	it’s
not	really	magic,	it	just	seems	that	way	when	you	don’t	know	what’s	going	on	inside.	For	instance,	even	though	I	love
audio	gear,	I	really	have	no	clue	about	the	inner	workings	of	the	amplifier	in	my	stereo.	All	I	know	is	that	I	plug	my
music	player	in	one	end	and	sound	comes	out	the	other.	Another	example	is	Google,	probably	the	greatest	Black	Box
known	to	man:	you	type	your	search	in	a	box	and	out	springs	millions	of	relevant	web	pages	(although	technically
theirs	is	a	Blue	Box,	not	a	black	one).	Calling	something	a	Black	Box	doesn’t	mean	the	system	is	unknowable:	clearly,
the	original	designer	of	the	Black	Box	knew	what	was	going	on	internally.

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 105

The	ideal	Black	Box	works	like	this…
(image:	©	Jason	Maxham)

Hiding	complexity	behind	Black	Boxes	is	essential	to	enable	the	average	person	to	use	technology	in	our	modern
civilization.	I	don’t	care	to	know	the	intimate	details	of	what	goes	on	inside	my	amplifier,	I	simply	don’t	have	the	time
or	inclination	to	acquire	that	knowledge.	However,	I	do	want	to	listen	to	music	in	my	living	room.	I	might	even	dance,
if	the	shades	are	drawn.	Likewise,	it	would	be	exhausting	to	have	to	interact	with	all	of	those	unshaven	programmers	at
Google	every	time	I	wanted	to	search	for	something	on	the	Internet.	Black	Boxes	allow	a	broader	range	of	society	to
participate	in	and	benefit	from	technological	innovation	by	making	complicated	things	simple.	“Yay!”	and	a	slow
clap	for	all	that.

What’s	the	downside?	Well,	for	the	same	reason	that	Black	Boxes	makes	our	life	easier	(you	don’t	have	to	know	how
they	work	to	use	them),	they	also	present	a	problem	for	the	troubleshooter.	As	long	as	it	works	flawlessly,	you	can	be
blissfully	ignorant	of	what	goes	on	inside	a	Black	Box.	Of	course,	all	machines	eventually	break	down	and	this	is	when
you’ll	need	to	make	the	transition	from	ignorant	to	enlightened	(or	preferably	beforehand,	if	you	want	to	be	prepared).

If	you	think	that	troubleshooters	only	encounter	Black	Boxes	in	the	world	of	off-the-shelf	consumer	products,	think
again.	The	root	of	the	Black	Box	Problem	is	a	lack	of	knowledge,	so	any	machine	can	be	a	candidate.	You	may	have
unwittingly	created	a	Black	Box,	especially	if	you’ve	cobbled	together	a	Franken-system	of	parts	you	didn’t	build
(Systems	Integrators	are	especially	likely	to	encounter	this	problem,	given	this	is	their	job	description).	Creating	a
machine	with	your	own	two	hands	won’t	confer	automatic	knowledge	of	how	it	will	be	used,	how	it	will	fail,	or	what
happens	internally	while	it	is	operating.	When	you	build	something,	you	usually	devote	a	lot	of	time	to	testing,	which
is	the	first-time	discovery	of	these	aspects.	This	learning	continues	long	after	a	machine	is	deployed	and	people	begin
to	report	their	successes	and	failures	actually	using	it	for	work.	Designing	a	machine	involves	many	humbling	surprises,
so	let	go	of	the	notion	that	creating	something	is	the	same	as	knowing	it.

In	addition	to	the	systems	we	create,	Black	Boxes	can	also	spring	into	existence	if	knowledge	about	a	system	is	lost:
consider	the	case	where	only	one	person	in	a	company	knows	how	to	fix	a	machine	and	they	retire	or	leave	to	take
another	job.	If	you’re	put	in	charge	of	its	maintenance	and	repair,	that	machine	just	became	a	Black	Box—to	you!

Thinking	Inside	The	Box

The	solution	to	solving	intermittent	problems	is	to	demystify	the	Black	Box.	This	means	inserting	probes	to	observe	the
functioning	of	individual	parts,	subsystems,	components,	or	stages	along	a	transformational	chain.	From	there,	start	to
look	for	correlations	among	those	readings	to	get	ideas	for	further	investigation.	Looking	at	data	from	probes	is	always
mind-expanding:	the	internal	workings	of	even	a	machine	you	think	you	know	well	often	astonishes.	In	fact,	expect	to
be	surprised:	if	you	knew	absolutely	everything	about	the	internal	workings	of	a	system	you’re	repairing,	you’d	already
have	solved	the	problem,	right?	Right.

Circularity:	Repeating	Positions	And	Processes

A	good	start	to	understanding	intermittent	problems	are	what	I	like	to	call	“circular”	components.	I	put	circular	in
quotes	because	we’re	not	always	talking	about	actual	circles	here,	but	rather	any	part	that	follows	a	pattern	of	returning
to	where	it	started	during	the	course	of	doing	work.	Examples:	wheels,	fixed-digit	counters	(e.g.,	something	that	goes:

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 106

http://www.youtube.com/watch?v=QhTiJEYqqY8
http://en.wikipedia.org/wiki/System_integration

“00”,	“01”…”99″,	“00”),	belts,	gears,	sprockets,	chains,	gates,	switches,	pistons,	etc.

The	relationship	to	intermittent	problems	is	that	one	or	more	of	the	positions	in	the	repeated	pattern	may	be	failing.
Many	circular	systems	are	designed	to	keep	going	even	though	one	of	the	steps	in	the	cycle	is	failing.	Meshed	gears
elegantly	illustrates	this	principle:

Meshed	gears:	10-tooth	with	6-tooth.
(image:	©	Jason	Maxham)

First,	observe	the	circular	nature	of	the	smaller	gear	in	this	machine:	it	returns	to	where	it	started	after	cycling	through
all	6	of	its	teeth.

But,	let’s	say	that	one	of	the	teeth	on	the	smaller	gear	breaks:

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 107

A	broken	tooth	(labeled	#2)	on	the	smaller	gear	will	intermittently	move	the	larger	one.
(image:	©	Jason	Maxham)

If	this	machine	is	designed	to	do	something	with	each	partial	turn	of	the	smaller	gear,	the	machine	will	fail
intermittently	because	of	this	single	broken	tooth.	Specifically,	it	will	work	5	times	in	a	row,	followed	by	a	failure,	then
work	5	times	in	a	row	again,	followed	by	another	failure,	etc.	I’ve	numbered	the	teeth	on	the	smaller	gear	in	the
diagram	to	show	you	what	happens	in	each	iteration:

Sequence
#

Tooth
Meshing Status

1 1 OK

2 2 FAULT

3 3 OK

4 4 OK

5 5 OK

6 6 OK

7 1 OK

8 2 FAULT

9 3 OK

10 4 OK

11 5 OK

12 6 OK

If	you	were	troubleshooting	this	machine	and	being	observant,	you	might	notice	this	predictable	ratio	of	5:1	successes
to	failures,	along	with	their	reliable	sequence.	This	may	be	an	intermittent	problem,	but	it’s	also	a	very	reliable	one.
Interestingly	enough,	missing	teeth	on	gears	are	utilized	on	purpose	in	the	design	of	analog	counters.	For	that	particular
purpose,	intermittent	behavior	is	desired:	on	a	counter	you	want	the	10s	position	to	increment	only	once	for	every	10

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 108

revolutions	of	the	1s	counter.	Take	a	look	at	the	beginning	of	the	video	“Building	the	mechanical	counter”	(0:30-0:45)
to	see	the	use	of	missing	teeth	in	action	for	the	construction	of	a	counter.

Missing	teeth	on	a	gear	can	be	a	design	feature	or	cause	a	breakdown,	depending	on	the	context.	What	lies	behind	a
failure	can	sometimes	be	used	elsewhere	for	good.	This	is	a	unique	perspective	on	engineering	that	you	will	develop	as
a	troubleshooter.

The	real	world	will	present	you	with	intermittent	failure	scenarios	far	more	complicated	than	the	above	example	of	the
single	missing	tooth	in	a	gear.	Let’s	expand	on	this	and	imagine	a	machine	with	several	intermittently	failing	“circular”
components.	Their	combined	behavior	will	result	in	very	complicated	intermittent	failure	pattern	that	will,	at	first
glance,	appear	to	be	random.

Let’s	start	with	3	gears	this	time	and	add	some	broken	teeth	into	the	mix:

Three	gears	(A,	B,	and	C),	each	with	a	broken	tooth.
(image:	©	Jason	Maxham)

Numbering	the	teeth	from	the	top	clockwise,	you	can	see	that:

the	blue	6-toothed	gear	(A)	is	missing	tooth	#2
the	green	9-toothed	gear	(B)	is	missing	tooth	#7
the	red	18-toothed	gear	(C)	is	missing	tooth	#4

We’ll	set	up	our	scenario	with	some	assumptions:

The	broken	gears	are	located	in	different	places	in	a	machine,	independently	supporting	different	functions.

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 109

http://www.youtube.com/watch?v=lwt8QujQv5s

Gear	speed,	measured	in	teeth	per	minute,	is	the	same	for	all	gears.	This	means	that	the	gear	with	6	teeth	will	make
3	revolutions	in	the	same	time	it	takes	the	gear	with	18	teeth	to	make	one.
If	any	of	the	gears	is	currently	turning	through	a	broken	tooth,	the	machine	will	temporarily	cease	to	do	its	work.

The	result	of	the	missing	teeth	in	the	separate	gears,	although	acting	independently,	will	together	produce	a	very	erratic
and	intermittent	failure	scenario:

Sequence
#

Machine
Status

Tooth
Meshing

Gear
A Gear	B Gear

C

1 OK 1 1 1

2 FAULT 2 2 2

3 OK 3 3 3

4 FAULT 4 4 4

5 OK 5 5 5

6 OK 6 6 6

7 FAULT 1 7 7

8 FAULT 2 8 8

9 OK 3 9 9

10 OK 4 1 10

11 OK 5 2 11

12 OK 6 3 12

13 OK 1 4 13

14 FAULT 2 5 14

15 OK 3 6 15

16 FAULT 4 7 16

17 OK 5 8 17

18 OK 6 9 18

19 OK 1 1 1

20 FAULT 2 2 2

21 OK 3 3 3

22 FAULT 4 4 4

23 OK 5 5 5

24 OK 6 6 6

25 FAULT 1 7 7

26 FAULT 2 8 8

27 OK 3 9 9

28 OK 4 1 10

29 OK 5 2 11

30 OK 6 3 12

31 OK 1 4 13

32 FAULT 2 5 14

33 OK 3 6 15

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 110

34 FAULT 4 7 16

35 OK 5 8 17

36 OK 6 9 18

If	you	could	only	see	the	external	result,	this	machine’s	behavior	would	seem	very	bizarre.	Sometimes	it	fails	once	and
sometimes	twice	in	a	row,	with	the	sequence	of	successes	and	failures	being:	1,1,1,1,2,2,5,1,1,1,2.	Also,	it	takes	18
iterations	for	the	complete	failure	pattern	to	emerge!	Of	course,	you	wouldn’t	even	begin	to	recognize	it	as	a	discrete
pattern	until	you	had	observed	two	full	cycles	(that’s	why	I	included	2	×	18	=	36	iterations	in	the	table	above).	Would
you	have	the	patience	to	observe	and	systematically	record	all	this	until	the	sequence	emerged?	I	doubt	I	would.

A	Cover-up:	The	Masking	Effect	Of	Time-Aligned	Failures

Now,	we’ll	examine	how	concurrent	failures	can	hide	each	other.	Let’s	take	the	gears	from	the	previous	example	and
mount	them	on	a	common	driveshaft:

Gears	(A,B,C)	installed	on	a	common	driveshaft.	Again,	each	gear	is	missing	a	tooth:
A	(6-teeth,	blue):	#2
B	(9-teeth,	green):	#7
C	(18-teeth,	red):	#4
(image:	©	Jason	Maxham)

For	this	example,	we’ll	say	that	these	aligned	gears	(A,B,C)	are	meshed	at	the	12	o’clock	position	with	3	separate	gears
(those	connecting	gears	not	shown	in	the	diagram).	As	before,	we’ll	assume	that	if	any	gear	is	meshing	on	a	broken
tooth,	the	machine	will	temporarily	stop	doing	its	work.	Also	note:	because	the	gears	are	being	spun	by	the	same
driveshaft,	the	time	it	takes	for	the	small	gear	to	turn	through	6	teeth	is	equal	to	the	time	it	takes	the	larger	gear	to	turn

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 111

through	18	teeth.	Here’s	what	the	failure	pattern	will	look	like:

Sequence
#

Machine
Status

Tooth
Meshing

Gear
A Gear	B Gear

C

1/18 OK 1 1 1

2/18 OK 1 1 2

3/18 OK 1 2 3

4/18 FAULT 2 2 4

5/18 FAULT 2 3 5

6/18 FAULT 2 3 6

7/18 OK 3 4 7

8/18 OK 3 4 8

9/18 OK 3 5 9

10/18 OK 4 5 10

11/18 OK 4 6 11

12/18 OK 4 6 12

13/18 FAULT 5 7 13

14/18 FAULT 5 7 14

15/18 OK 5 8 15

16/18 OK 6 8 16

17/18 OK 6 9 17

18/18 OK 6 9 18

Again,	a	more	complicated	pattern	emerges	with	multiple	failings	gears,	versus	just	a	single	failing	gear.	An	interesting
aspect	of	this	example	is	that	the	missing	teeth	on	Gear	A	(#2)	and	Gear	C	(#4)	mesh	at	the	same	time.	You	can	see
from	the	table	that	these	time-aligned	failures	mask	each	other.	Even	if	you	found	and	fixed	the	missing	tooth	on	Gear
C,	the	machine	would	still	fail	the	same	way	until	you	also	fixed	Gear	A.

It	Only	Gets	Weirder

Hopefully,	by	now	you’ve	grasped	the	concept:	malfunctioning	parts,	each	with	their	own	patterns,	can	act	together	to
produce	much	more	complicated	and	intermittent	failures.	When	viewed	individually,	the	broken	gears	I’ve	used	as
examples	at	least	have	a	reliable	error	sequence.	While	gears	are	a	great	model	for	understanding	intermittent	failures,
in	the	wild	be	prepared	for	malfunctioning	components	with	no	discernible	failure	pattern.	Combine	several	of	these
together	and	you’ll	have	a	recipe	for	intermittency	that	looks	perfectly	chaotic.

When	I	see	completely	random	behavior	like	this,	I	like	to	take	my	investigation	“up	a	level”	and	look	for
environmental	or	system-wide	explanations.	What	comes	to	mind	is	the	time	when	the	cooling	system	in	our	data
center	went	down.	As	our	servers	were	pushed	out	of	their	recommended	temperature	ranges,	very	strange	things
began	to	happen.	Random	reboots,	crashes,	slowness.	Everything	bad,	and	in	large	quantities.	Even	under	normal
conditions,	the	usage	patterns	of	individual	servers	in	a	computing	cluster	are	highly	variable	and	dependent	upon	the
work	being	performed.	Add	to	that	a	cooling	system	loss,	which	brings	the	uneven	effects	of	hot	air	collecting	and
dispersing	in	a	disorderly	fashion,	and	you	have	a	recipe	for	failures	that	will	be	impossible	to	duplicate.

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 112

Flooded?	Flying	on	fumes?	Filling	up	and	running	out	are	common	causes	of	intermittent	problems.
(image:	RobbieMcConnel	/	CC	BY-SA	3.0)

Running	On	Empty

A	related	concept	to	“circular”	components	are	things	that	might	be	“filling	up”	or	“running	out.”	Depending	on	what
is	being	emptied	or	filled,	these	conditions	may	cause	a	machine	to	stop	operating	intermittently.	On	the	“filling	up”
side,	this	could	be	something	like	a	reservoir	that	holds	waste	fluids	or	the	output	tray	on	a	copier.	When	it	comes	to
things	“running	out,”	examples	might	include	fuel	being	fed	to	a	motor	or	disk	space	on	a	computer.	The	key	is	that	the
fill	or	depletion	rate	might	vary,	making	the	timing	of	the	failure	variable	as	well.	Combine	several	of	these	buffers	or
reservoirs	that	are	“filling	up”	with	other	resources	that	are	“running	out”	and	you	have	the	recipe	for	very	complicated
intermittent	failure	scenarios	(similar	to	the	multiple	gears	example	above).

Probes	and	gauges	to	the	rescue!	If	you	can	be	aware	of	the	“filling	up”	and	“running	out”	of	the	machine’s	resources,
you	can	begin	to	correlate	these	events	to	breakdowns.	Automated	monitoring	and	alerting	is	the	preferred	end	game
for	catching	things	that	have	run	out	or	filled	up	(e.g.,	a	“low	oil”	light	on	an	automobile	dashboard).

What’s	Going	On	In	There,	In	The	Space	Between?

Once	you’ve	opened	up	the	Black	Box,	you	can	see	if	the	internal	components	are	behaving	in	a	predictable	way.	If
you	look	closely	enough,	you	may	find	otherwise.	Testing	the	parts	individually,	you	may	find	that	one	(or	more)	is
failing	intermittently	and	therefore	causing	the	intermittent	failure	of	the	entire	machine.

Take	the	example	of	an	internal	combustion	engine	as	seen	from	the	perspective	of	your	average	car	owner:	they	put
gas	in	one	end	and	the	car	gets	propulsion	on	the	other.	Another	Black	Box.	Of	course,	there’s	a	lot	going	on	inside	an
engine	and	there’s	a	long	list	of	things	that	must	be	right	for	it	to	work	properly.	When	it	comes	to	monitoring,	you
could	watch	the	pressure	inside	every	cylinder,	the	spark	plug	voltage	during	the	firing/recharge	cycle,	the	consistency
of	the	air/gas	mixture,	etc.	If	you	think	obtaining	this	level	of	detail	is	fantasy,	you	probably	have	never	seen	a	modern
analyzer	in	an	auto	repair	shop.	Engine	analysis	before	the	era	of	computers	used	more	primitive	tools	and	therefore
more	work	was	required	to	gather	this	kind	of	data.	But,	antique	or	modern,	the	need	to	dig	into	and	understand	the
Black	Box	is	the	same.	Understanding	the	whole	by	understanding	the	parts	is	a	key	part	of	this	demystifying	process.

While	we’re	probing	the	goings-on	within	the	Black	Box,	we	also	need	to	include	the	interfaces	 between	components.
These	points	of	connection	are	another	common	source	of	intermittent	failures.	They	include	examples	like:	oxidized

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 113

https://commons.wikimedia.org/wiki/File:Fuel_contents_gauge.JPG
https://creativecommons.org/licenses/by-sa/3.0/deed.en

contacts	between	a	speaker	and	an	amplifier,	a	broken	clip	on	a	network	cable,	or	a	loose	screw	that	terminates	a	wire
in	an	electrical	plug.	I	think	there’s	two	main	reasons	why	these	“in-between”	parts	are	so	vulnerable	to	wear	and	tear:

1.	 They	are	often	conduits	responsible	for	transferring	energy	or	work.	You	may	have	heard	the	expression	“Where
the	rubber	meets	the	road.”	This	a	perfect	description	of	the	function	of	interface	parts	and	the	reason	why	they
take	such	abuse.

2.	 Within	their	context,	these	parts	are	often	externally	located	and	therefore	more	exposed	to	hazards	or	the
elements.	You	can	have	a	beautiful	machine	encased	in	titanium,	but	it	likely	has	a	power	cord	coming	out	of	the
side,	which	can	be	punctured,	squished	against	a	wall,	or	rubbed	until	it’s	bare.

Quantum	Troubleshooting

Will	always	having	the	same	inputs	lead	to	the	same	outputs	when	troubleshooting?	Chaos	theory	would	say
otherwise.	Yes,	if	everything	was	exactly	the	same,	down	to	the	subatomic	level,	perhaps	you	could	guarantee	that	the
same	inputs	would	result	in	the	same	outputs.	However,	until	we’re	arranging	particles	at	whim,	you’ll	have	to	realize
that	there	will	always	be	small	differences	between	the	original	failure	scenario	and	your	attempts	to	recreate	it	for	the
purpose	of	duplication.	There’s	also	one	big	part	of	the	original	context	that	will	be	impossible	to	replicate:	time.	Even
if	you	could	magically	place	every	particle	in	the	exact	same	place,	you	simply	can’t	roll	back	the	clock	to	recreate	the
same	time	context	in	which	a	failure	occurred	(where’s	my	time	machine,	already?!).

Troubleshooting	is	a	present	and	future-oriented	exercise.	The	strategies	presented	here,	especially	ones	like	 “don’t	fix
it,”	are	pointed	toward	a	future	that	is	much	better	than	the	past.	Even	if	you	could	add	a	Time	Machine	to	your
toolbox,	you	wouldn’t	want	to!	Alright,	a	time	machine	that	fits	in	a	toolbox	would	be	pretty	cool.	It’s	just	that	I’m	sure
we	could	find	better	uses	for	it	than	fixing	your	car.	We’d	use	it	to	witness	important	stuff,	like	the	invention	of	the
doughnut.

If	your	efforts	at	duplication	continue	to	be	thwarted,	even	after	you	start	monitoring	the	internals	of	a	system,	you
might	be	dealing	with	a	chaotic	system.	Chaotic	systems	will	take	small	differences	in	starting	input	and	turn	them	into
very	large	differences	in	outputs.	This	will	manifest	itself	in	behavior	that	 appears	to	be	random.	It’s	not	a	machine,	but
a	good	example	of	a	system	that	frequently	resists	duplication	is	the	weather.	Even	though	some	of	the	parts	are	well
understood	(how	clouds	form,	seasonal	temperature	patterns,	effects	of	changes	in	atmospheric	pressure,	etc.),	they
interact	in	unexpected	ways	on	a	massive	scale	that	frustrates	reliable	prediction.	The	weather	may	be	the	ultimate
example	of	this,	but	I’ve	worked	on	systems	that	are	just	as	frustrating	to	understand.	For	the	curious,	there’s	a	whole
field	of	research	devoted	to	the	“control	of	chaos.”	The	technology	that	makes	lasers	possible	(the	awesome-sounding
“OGY	Method”)	was	one	of	the	first	achievements	in	the	battle	against	chaos.

Chaotic	systems	tend	to	be	very	complicated	(or	at	least	appear	so)	and	have	many	components,	so	prepare	for	some
serious	troubleshooting.	Here	are	some	strategies	for	bringing	stability	to	a	chaotic	system:

Reduce	complexity:	pare	back	the	number	of	subsystems,	variables,	and	settings,	along	with	opportunities	for
interactions	between	them.	Especially	in	networked	systems,	where	every	node	is	connected	to	every	other	node,
the	number	of	possible	connections	grows	exponentially	as	you	add	nodes.
Lock	down	and	standardize	the	flow	between	parts:	you	may	need	to	introduce	governors	or	limiters	to	dampen
the	effects	of	swings	in	inputs	and	outputs.	Specifying	and	enforcing	limits	will	make	subsystems	operate	in	a
narrower	band,	which	can	reduce	chaotic	behavior.
Use	automated	monitoring	and	correction	to	restore	service:	until	you	understand	what	is	driving	the	chaos,	a
good	temporary	solution	is	to	monitor	your	systems	and	make	automated	corrections	based	on	that	monitoring.	As	I
point	out	in	“Defaults	and	Reboots”,	sometimes	this	path	is	good	enough	to	work	indefinitely	if	the	cost	of
understanding	the	root	cause	is	prohibitive.	Can	you	automatically	press	the	“reset”	switch	whenever	a	system
begins	to	behave	chaotically?	Open	or	close	pathways,	speed	or	slow	throughput,	take	subsystems	on	or	off	line:
these	are	all	options	when	automated	monitoring	enters	the	picture.

References:

Header	image:	Lee,	R.,	photographer.	(1939)	Stitching	cardboard	boxes.	Grapefruit	canning	plant,	Weslaco,	Texas.
United	States,	Weslaco,	Texas,	Hidalgo	County,	1939.	Feb.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017782081/.

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 114

https://artoftroubleshooting.com/2011/11/22/does-it-need-to-be-fixed/
http://en.wikipedia.org/wiki/Control_of_chaos
http://en.wikipedia.org/wiki/Control_of_chaos#OGY_method
https://artoftroubleshooting.com/2011/12/21/defaults-and-reboots/
https://www.loc.gov/item/2017782081/

Failing	To	Fail	(Duplicate	The	Problem,	Part	2) 	was	originally	published	February	14,	2013.

Notes:

Failing	To	Fail	(Duplicate	The	Problem,	Part	2)	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 115

Defaults	And	Reboots

A	lot	of	times,	I’m	surprised	by	how	simple	the	solution	is.

Jamie	Karrick

Any	device	that	is	configurable	is	vulnerable	to	errors	stemming	from	those	same	settings	being	mis-configured.	Did	a
switch	or	bit	inadvertently	get	flipped,	resulting	in	a	malfunction?	On	a	machine	with	many	options,	this	might	be	hard
to	figure	out.	Therefore,	a	crude	but	useful	way	to	determine	if	the	machine	is	functional	is	to	restore	the	default
settings.	On	digital	devices,	this	is	usually	very	easy:	you	select	one	option	and	BAM!,	the	device	reverts	to	how	it
came	from	the	factory	on	the	day	you	bought	it.	Mechanical	devices	also	have	“default	settings”,	but	you	might	have	to
look	in	the	manual	to	find	them	(i.e.,	there	may	be	no	magic	switch	that	restores	them	like	on	a	computer).

Defaults	And	Reboots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 116

http://www.youtube.com/watch?v=XvazQUYG1kE

Um…is	this	thing	set	up	right?
(image:	Steve	Jurvetson	/	CC	BY	2.0)

Once	you’ve	verified	that	the	machine	works	with	the	default	settings,	you	can	begin	to	change	the	configuration	back
to	your	desired	settings.	If	you	do	this	using	my	“change-just-one-thing-at-a-time”	philosophy,	you	should	be	able	to
identify	the	particular	setting	that	is	causing	your	machine	to	malfunction.

Alternatively,	you	may	have	created	your	own	“default	settings”:	think	of	a	network	router	that	has	been	configured	to
work	on	your	network	(with	your	IP	addresses,	netmasks,	routing	table	entries,	etc.).	A	scheme	like	this	usually	means
these	settings	are	automatically	loaded	when	the	device	starts	up.	Again,	these	could	have	been	inadvertently	changed,
so	restoring	the	machine	to	your	desired	settings	(i.e.,	your	own	personal	“defaults”)	will	at	least	eliminate	the
possibility	that	a	configuration	problem	is	the	cause.

Off	And	On	Again

Turn	it	off.	Turn	it	back	on.	Whether	known	as	rebooting,	power	cycling	or	restarting,	this	is	such	a	simple	yet	powerful
troubleshooting	trick	that	it	deserves	its	own	section.	Actually,	given	how	often	it	works,	a	shrine	would	be	a	more
fitting	tribute.

Even	as	my	troubleshooting	skills	have	grown	over	the	years,	the	reboot	technique	still	has	its	place	among	my	top
strategies.	Since	I’m	really	into	troubleshooting	theory,	sometimes	I	want	to	make	things	more	complicated	than	they
really	are.	But	turning	it	off	and	then	turning	it	on	again	has	solved	so	many	problems	in	so	many	different	contexts	that
you	always	have	to	ask	yourself:	“Why	am	I	not	using	this	strategy?”

Defaults	And	Reboots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 117

http://www.flickr.com/photos/jurvetson/7059063683/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/

The	On/Off	Switch:	perhaps	the	greatest	troubleshooting	device	known	to	mankind.
(image:	Markus	Tacker	/	CC	BY-ND	2.0)

But	Why	Does	It	Work?

How	the	on/off	switch	returns	a	machine	back	to	normal	brings	together	several	concepts	that	we’ve	previously
discussed.	A	restart	usually	restores	a	system	to	a	simplified	state,	along	two	dimensions	we’ve	covered:

1.	 Just	the	basics:	many	machines	will	start	up	in	their	most	primitive	state,	with	additional	modules	or	subsystems
deactivated.	As	noted,	fewer	subsystems	in	use	lessens	the	chance	of	unwanted	interactions	among	them.

2.	 Configuration	reset:	usually,	the	longer	a	machine	is	on	and	used,	the	more	its	configuration	will	be	changed.	This
means	that,	over	time,	the	probability	of	choosing	an	error-prone	configuration	will	increase.	Since	most	machines
will	have	a	default	“startup”	configuration	(usually	designed	by	the	manufacturer	to	always	work),	the	on/off
strategy	can	be	shorthand	for	removing	a	bad	configuration.

Lastly,	restarting	can	solve	another	class	of	problems:	corruption	that	occurs	as	a	result	of	use.	Over	time,	operators
and	circumstances	will	put	a	machine	through	its	paces.	Buffers	and	reservoirs	will	fill	up	or	empty	out,	cruft	will
accumulate.	Because	many	machines	have	automated	start	up	procedures	that	restore	a	“clean”	configuration,	the
on/off	switch	may	catalyze	a	simpler	state	and	clear	away	these	issues.

Off	Putting

Every	troubleshooting	strategy	has	a	context	in	which	it’s	not	to	be	used.	While	we	may	agree	that	the	on/off	switch
may	have	the	highest	return	on	investment	if	you	were	to	rank	all	available	options,	there	are	some	times	when	it
shouldn’t	be	used.	It	may	seem	obvious,	but	I	must	point	out	that	not	every	machine	can	be	turned	off	without	serious
consequences.	A	respirator	keeping	a	patient	alive	or	the	lone	engine	on	an	airplane	in	flight	are	bad	candidates	for	the
restart	strategy.	Besides	the	obvious	reasons	of	interrupting	someone’s	breathing	or	cutting	off	the	only	source	of	thrust
for	a	plane	in	motion,	restarting	a	machine	has	another	big	risk:	IT	MAY	NOT	COME	BACK	TO	LIFE	AFTER	A
RESTART.

This	is	a	big	factor	for	machines	that	have	been	running	for	a	long	time.	I’ve	personally	observed	computers	that	have
been	continuously	humming	away	happily	for	years,	only	to	die	on	reboot.	As	long	as	it	remained	in	motion,	things
were	fine;	however,	as	soon	as	forward	progress	was	interrupted,	it	stopped	working.	Humans	may	be	the	same	way,
our	lives	require	a	forward	momentum	that	is	sometimes	not	advisable	to	interrupt.	Think	of	all	the	people	who	have

Defaults	And	Reboots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 118

http://www.flickr.com/photos/tacker/4325590652/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
https://artoftroubleshooting.com/2011/11/14/bare-bones-back-to-the-basics/

died	shortly	after	retiring…

So,	always	consider	the	context	in	which	a	system	lives	before	reaching	for	that	power	switch.	If	the	machine	has	been
continuously	running	for	a	long	time	and	is	critical	to	your	designs,	be	sure	to	have	a	good	Plan	B	before	restarting.

Please	stand	by	while	I	reboot	the	entire	Internet…
(image:	Karl	Baron	/	CC	BY	2.0	/	Cropped	from	original)

A	Long-term	Workaround…?

You	may	encounter	problems	that	can	be	consistently	solved	by	restarting.	Would	it	be	acceptable	to	use	this	as	a
workaround	for	the	long-term?	Would	this	exclude	you	from	considering	yourself	a	Master	Troubleshooter?	Doesn’t	the
Master	Troubleshooter	always	want	to	know	why	something	doesn’t	work?

The	answer?	No.	Remember	that	all	troubleshooting	decisions	have	an	economic	component.	The	cost	of	figuring	out
the	why	behind	a	failure	may	be	prohibitive.	If	a	simple	reboot	will	right	things	and	can	be	incorporated	into	your
workflow,	go	for	it!	I’ve	seen	people	automate	restarts,	rebooting	a	system	at	the	beginning	of	every	workday,	before
every	shift,	etc.	Of	course,	make	sure	you	take	into	account	the	full	cost	of	unexpected	interruptions	before	you	make
restarting	a	permanent	part	of	your	routine.

References:

Header	image:	Historic	American	Engineering	Record,	C.,	36.	INTERIOR	VIEW,	BERK	SWITCH	TOWER,	SOUTH
NORWALK,	SHOWING	SWITCHING	LEVERS	FROM	OPERATOR’S	POSITION	–	New	York,	New	Haven	&
Hartford	Railroad,	Automatic	Signalization	System,	Long	Island	Sound	shoreline	between	Stamford	&	New	Haven.
[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/ct0380/.

Defaults	And	Reboots	was	originally	published	December	22,	2011.

Notes:

Defaults	And	Reboots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 119

http://www.flickr.com/photos/kalleboo/4611613067/
http://creativecommons.org/licenses/by/2.0/deed.en
https://www.loc.gov/item/ct0380/

Change	Just	One	Thing

I	take	a	scientific	method	approach:	only	change	one	variable	at	a	time.

Mike	McCormick

Most	troubleshooting	exercises	will	be	a	narrowing	to	a	single	failed	component	(and	hopefully,	it’s	just	one	broken
part!).	Paring	down	a	list	of	possibilities	leads	to	isolation,	which	in	the	context	of	troubleshooting	means	that	you	can
confidently	point	to	a	particular	part	of	a	system	and	say,	“The	problem	is	somewhere	in	here.”	After	you’ve	made
your	best	guess	as	to	the	cause	and	you’re	ready	to	test	a	particular	fix,	only	change	one	variable	at	a	time.	Most
importantly,	you	should	re-test	for	the	failed	condition	after	each	change.	If	you	don’t,	you	may	solve	the	problem,
but	you	won’t	know	what	you	did	to	solve	it.

You	should	view	each	troubleshooting	session	as	an	opportunity	to	learn;	changing	multiple	things	simultaneously	will
destroy	the	knowledge	that	could	be	gained	from	a	failure.	If	you’re	the	kind	of	person	that	likes	to	continually	improve
the	world	around	you	(or,	close	enough,	you’re	responsible	for	making	a	system	work),	you	should	crave	getting	to	the
root	of	a	problem.	Since	if	often	takes	multiple	failures	to	have	that	“Aha!”	moment	of	realization,	treat	every
breakdown	as	a	precious	lucky	break	to	start	this	learning	process.

Change	Just	One	Thing	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 120

https://artoftroubleshooting.com/2013/04/25/clear-up-to-here/

If	you	want	to	understand	cause	and	effect,	only	change	one	thing	at	a	time.	However,	the	5-year-old	in	me
just	wants	to	twist	all	these	knobs	and	slide	all	these	sliders.

(image:	eyeliam	/	CC	BY	2.0)

Economy	Of	Action

I’ll	often	be	talking	with	someone	who	got	something	professionally	repaired	and	they’ll	relate	to	me	how	pleased	they
are:

Me:	“What	did	they	end	up	doing	to	your	car?”
He	Who	Just	Paid	A	Large	Repair	Bill: 	“Let’s	see,	they	replaced	the	fuel	pump,	battery,	hoses,	fan	belts,	and	adjusted
the	valves.”
Me:“Wow,	but…which	of	those	repairs	fixed	the	problem?”
He	Who	Just	Paid	A	Large	Repair	Bill: 	“I	don’t	know,	but	it’s	definitely	gone	now!”

The	problem	better	be	solved,	because	every	component	even	remotely	related	to	it	was	replaced!	The	 economics	of
troubleshooting	often	favors	swapping	over	repair,	especially	if	the	cost	of	parts	is	low	and	the	price	of	labor	is	high.
But,	keep	in	mind	the	counterbalancing	“cost”	of	shotgun-style	repairs:	they	do	little	to	advance	your	knowledge	of
what	went	wrong.

Of	course,	I’m	not	the	first	person	to	note	the	necessity	of	only	changing	one	thing	at	a	time	when	determining	cause
and	effect.	This	is	a	bedrock	principle	of	the	scientific	method,	which	involves	modifying	a	single	“independent
variable”	and	observing	the	results.	The	people	in	white	coats	do	this	to	ensure	that	they	are	conducting	a	 “fair
test”	and	that	their	results	will	be	repeatable	for	other	scientists.	A	good	experiment	has	static	conditions	for	every
round	of	data	collection,	save	for	that	lone	variable	being	adjusted,	to	ensure	that	any	changes	stem	from	it	alone.

The	scientific	method	has	much	to	teach	the	troubleshooter:	think	of	the	broken	system’s	output	as	the	 dependent
variable	in	your	fix-it	experiment.	You	form	your	hypothesis	for	the	cause	of	the	failure,	and	your	proposed	fix	is	the
independent	variable	that	will	be	changed.	If	you	find	that	your	hypothesis	was	wrong	(and	therefore	you’d	like	to	test
another	theory	that	involves	a	different	fix),	be	sure	to	put	the	previous	independent	variable	you	changed	back	to	its
original	condition.	This	means	putting	the	system	back	exactly	like	you	found	it:	settings,	parts	you	may	have	taken
out,	etc.

Before	I	knew	better,	there	were	so	many	times	where	I	would	attempt	a	different	fix,	but	not	put	a	machine	back	to	the

Change	Just	One	Thing	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 121

http://www.flickr.com/photos/eyeliam/2544539491/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/
http://www.sciencebuddies.org/science-fair-projects/project_variables.shtml
http://www.sciencebuddies.org/science-fair-projects/project_experiment_fair_test.shtml

way	it	was	before	trying	the	previous	one.	Not	only	does	this	scenario	violate	the	“change	just	one	thing”	principle,	but
the	change	you’ve	failed	to	revert	may	now	be	a	new,	additional	cause	of	non-operation.	Prepare	for	frustration	as	now
you’re	troubleshooting	two	problems	instead	of	one!

References:

Header	image:	Agrl.	Dept.,	Biological	Survey	laboratory.	ca.	1920.	[Photograph]	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/2016852276/.

Change	Just	One	Thing	was	originally	published	January	11,	2012.

Notes:

Change	Just	One	Thing	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 122

https://www.loc.gov/item/2016852276/

The	Way	It	Is	And	The	Way	It	Was

Write	everything	down.	Once	you’ve	started	a	problem,	write	down	what	you	did.	Each	step.	Because,	you	will
not	remember	it.	You’ll	remember	5	or	10	minutes	from	now,	but	you	may	not	solve	it	in	5	to	10	minutes.	Three
hours	later,	you	won’t	know	what	you	tried!	Especially	if	you	don’t	know	how	to	get	to	reproducibility,	your
memory	will	lie	to	you.	You	won’t	remember	the	exact	details	of	how	you	did	something...

Karl	Kuehn

Before	you	dive	in	and	start	tearing	something	apart,	take	a	moment,	close	your	eyes,	and	imagine	yourself	putting	it
back	in	working	order.	Through	the	course	of	your	little	thought	experiment,	you	may	realize	that	you	don’t	have	a
clue	how	it	was	put	together.	Which	leads	us	to	the	following	troubleshooting	commandment,	sent	down	from	on	high:

Lo!	Thou	shalt	keep	track	of	things	as	you	take	them	apart.

Some	very	simple	things	will	help	you	follow	this	decree:	grab	a	pencil	and	paper	and	take	some	notes,	make	a	sketch,
or	take	a	photo.	They	say	a	picture	is	worth	a	1,000	words:	one	can	save	you	countless	man-hours	when	it’s	time	to
reassemble.	Please,	grab	your	camera	and	take	some	snapshots	before	everything	is	in	pieces.	On	even	the	simplest	of
machines,	there’s	just	too	much	minutiae	to	ever	contemplate	memorizing	everything.	Even	if	you	have	a	general	sense
of	where	things	go,	there	are	a	lot	of	details	that	could	potentially	be	important:	positions	of	dials,	gears,	levers,	fluid
levels,	etc.	Also,	keep	in	mind	that	sometimes	a	fix	may	take	a	long	time	to	materialize.	You	might	be	able	to

The	Way	It	Is	And	The	Way	It	Was	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 123

remember	what	the	machine	looked	like	yesterday,	but	you	might	not	be	able	to	complete	your	repair	in	such	a	short
time	frame.	If	you	have	to	order	parts	that	take	weeks	to	arrive	or	the	repair	is	far	down	on	your	priority	list,	there’s	the
possibility	it	may	be	a	long	time	before	reassembly.	Notes	and	photos	will	ensure	you	can	easily	pick	up	where	you	left
off.

If	you’re	working	on	a	digital	device,	the	equivalent	to	a	camera	is	backup	software.	Use	these	tools	to	take	a
“snapshot”	of	a	system	before	you	start	messing	with	it:	should	your	efforts	go	awry,	you	can	later	return	it	exactly	to	its
previous	state	by	restoring	the	backup.	There’s	really	no	equivalent	in	the	mechanical	world,	so	take	full	advantage	of
this	difference!

On	a	related	note,	if	you’re	contemplating	taking	something	completely	apart,	you	might	want	to	stop	and	ask	yourself:
“Why	am	I	doing	this?”	It’s	a	gross	violation	of	the	“change	just	one	thing”	principle	to	start	a	troubleshooting	exercise
by	creating	a	large	pile	of	pieces	on	the	workshop	floor.	If	you’re	vigilant	about	making	only	one	modification	at	a
time,	rigorous	documentation	won’t	need	to	be	a	priority	(like	it	would	be	in	a	complete	teardown).	Adherence	to	the
“one	thing	at	a	time”	rule	means	you’re	always	just	a	single	step	away	from	how	you	found	things.

Paper	and	pencil:	low-tech,	but	important,	tools	for	troubleshooting.
(image:	Brendan	DeBrincat	/	CC	BY	2.0)

The	“Way	It	Was”	May	Be	WRONG!

Let’s	say	you’re	troubleshooting	a	problem,	painstakingly	keeping	track	of	how	the	components	fit	together:	their	order,
relative	position,	etc.	You	do	this	because	you	know	it’s	immensely	easier	to	put	something	back	together	if	you
remember	what	it	looked	like	before	you	took	it	apart.	You	deftly	wield	your	weapons:	a	camera,	pen,	and	paper.	You
take	photos,	write	notes,	draw	sketches,	and	perhaps	even	talk	into	a	voice	recorder	where	you	describe	what	you’re
doing	as	you	dismantle	a	complicated	piece	of	machinery.	Well	done,	Troubleshooter.

However,	be	prepared	for	the	following:	you	think	you’ve	discovered	and	isolated	the	problem,	replaced	the	failing
part,	and	put	everything	back	exactly	the	way	it	was.	It	appears	to	work	for	a	while	but	then,	the	problem	reoccurs!
You	scratch	your	head,	replace	the	suspect	component(s)	again,	and	it	breaks	down	again.	Reading	the	manual,	you
discover	that	the	previous	person	who	serviced	the	machine	put	it	back	together	wrong.	Consequently,	all	your
meticulous	work	to	document	the	machine’s	state	had	the	effect	of	preserving	the	errors.	Remember:	working	or	not,
how	you	find	a	machine	is	not	the	same	as	its	ideal	state.	In	some	cases,	it	can	be	a	long	way	off	from	“ideal.”	Who
knows	how	many	well-meaning	but	uninformed	people	touched	it	before	you?	Their	repairs	or	modifications	may	or
may	not	have	been	up	to	snuff.	They	may	have	put	the	machine	back	together	in	such	a	way	that	it	will	“work,”	but
not	in	all	circumstances	or	in	a	degraded	manner	that	lessens	the	life	of	its	component	parts.

The	Way	It	Is	And	The	Way	It	Was	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 124

https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/
http://www.flickr.com/photos/quacktaculous/3143079032/
http://creativecommons.org/licenses/by/2.0/deed.en

Automated	diagnostics	are	a	great	way	of	catching	the	Some-Idiot-Put-It-Back-Together-Wrong	type	of	problem	(but
remember,	sometimes	that	idiot	might	be	you!).	Maintenance	logs	can	tell	you	who	touched	a	machine	last.	If	those
aren’t	available,	I	would	recommend	simply	being	aware	of	the	environment:	do	a	visual	scan	of	the	machine	and	the
general	area	around	a	system	before	starting.	Does	anything	look	out	of	place	or	different	from	what	you’re	used	to
seeing?	Even	better,	ask	the	operator/on-site	guru	about	its	repair	history.	If	you	see	something	that	doesn’t	make	sense,
let	the	possibility	enter	your	mind	that	the	machine	has	not	been	put	back	together	correctly.

When	working	on	one	of	these,	improvising	is	discouraged	(and	probably	illegal).
(image:	John	Murphy	/	CC	BY-ND	2.0)

Some	industries	have	adopted	practices	to	prevent	sub-standard	repairs	and	deviations	from	the	ideal	system
specification.	In	aviation,	the	Type	Certificate	regime	is	very	strict	about	what	kind	of	parts	and	procedures	can	be	used
to	repair	a	particular	airplane.	In	fact,	certain	repairs	may	be	mandatory!	Imagine	getting	a	notice	saying	that	you	must
repair	your	refrigerator	by	a	certain	date	and	in	a	certain	way	or	it	can	no	longer	legally	be	used	to	chill	food.	That
would	be	overkill	for	a	refrigerator,	but	in	the	high-stakes	world	of	aviation	some	repairs	can’t	wait	and	must	be	done	a
specific	way.	Mechanics	who	work	on	Type	Certified	aircraft	are	required	to	maintain	the	ideal	“type”	and	are	not
allowed	to	deviate	from	it.	The	idea	being	that	clever	“hacks”	might	end	up	making	an	airplane	unsafe	and	kill	you.

Of	course,	adhering	to	the	Type	specifications	of	an	aircraft	doesn’t	necessarily	mean	it’s	safer	in	all	circumstances,
only	that	it’s	been	scrutinized	and	documented.	This	strictness	has	a	cost:	there	may	be	only	one	legal	way	to	fix	to	a
particular	problem.	Novel,	cost-saving	repairs	might	take	a	long	time	to	be	approved	because	of	the	rigorous	review
process.	Even	if	you	work	under	a	heavily	regulated	maintenance	regime	like	the	aviation	industry,	you	still	need	to	be
on	the	lookout	for	“the	way	it	is,	is	wrong.”	Regulations	in	place	or	not,	reality	always	has	the	last	word	on	whether	or
not	a	previous	repair	was	completed	correctly.

Lastly,	parts	and	connectors	that	will	only	fit	one	way	or	safeguards	that	will	only	allow	manufacturer	approved	parts
are	yet	more	ways	to	prevent	a	machine	from	deviating	from	its	ideal	state	over	a	lifetime	of	repair	and	regular
maintenance	(these	are	sometimes	a	revenue	generating	ploy	too,	see:	printer	ink).

The	Way	It	Is	And	The	Way	It	Was	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 125

http://www.flickr.com/photos/kingair42/2633344126/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://en.wikipedia.org/wiki/Type_certificate
http://www.faa.gov/aircraft/air_cert/continued_operation/ad/
http://en.wikipedia.org/wiki/Serial_ATA#Data_connector

Parts	that	only	fit	one	way	help	prevent	repair	errors.	Alas,	not	everything	will	be	as	well-designed	as	this
plug.	Components	installed	in	the	wrong	place,	or	in	the	wrong	way,	are	just	another	way	a	previous	repair

may	have	been	botched.
(image:	jkfid	/	CC	BY	2.0)

References:

Header	image:	“Camera	components”.	Vadim	Sherbakov,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/osSryggkso4.

The	Way	It	Is	And	The	Way	It	Was 	was	originally	published	January	31,	2012.

Notes:

The	Way	It	Is	And	The	Way	It	Was	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 126

http://www.flickr.com/photos/jkfid/4333765802/
http://creativecommons.org/licenses/by/2.0/deed.en
https://unsplash.com/photos/osSryggkso4

Is	It	Plugged	In?

I	check	the	obvious	things	first,	then	progressively	go	deeper	and	deeper.

Rich	Kral

More	often	than	not,	when	I	would	mention	to	someone	that	I	was	working	on	a	book	about	troubleshooting,	their
eyes	would	light	up	and	they’d	blurt	out:

Oh,	I	know	about	that!	“Is	it	plugged	in?”	Right?!

This	kept	happening.	Soon,	I	realized	that	I	was	writing	about	a	topic	with	universal	appeal.	Machines	are	everywhere
in	modern	life	and	we	rely	on	them	for	so	many	things.	Who	hasn’t	had	a	“I	forgot	to	plug	it	in”	moment	in	their	life?

Humans	are	natural	troubleshooters;	anyone	who	is	more	than	a	few	years	old	is	experienced	in	the	art.	Think	of	all
the	things,	both	large	and	small,	that	you’ve	fixed	in	your	lifetime.	Another	aspect	I	liked	about	people	shouting	out	“Is
it	plugged	in?”	was	the	implication	that	the	cause	of	most	failures	was	something	simple.	Experience	says	they’re	right!
If	we	were	to	scientifically	graph	how	most	problems	are	fixed,	I	think	we	would	find:

Is	It	Plugged	In?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 127

Graph:	a	rigorous,	scientific	comparison	of	a	spectrum	of	troubleshooting	tactics	by	probability	of	success.
(image:	©	Jason	Maxham)

One	of	the	goals	of	my	writing	is	to	acquaint	you	with	the	full	range	of	possibilities	for	failures	and	solutions.	Who
knows,	maybe	some	day	you	will	encounter	a	problem	that	requires	(metaphorical)	Unicorn	Horn	Dust.	I’ve	definitely
seen	some	weird	things	in	the	troubleshooting	trenches.	However,	experience	says	you’ll	probably	be	spending	most	of
your	time	on	the	left	hand	side	of	the	graph,	in	the	midst	of	solutions	like	plugging	things	in,	adding	gas,	and	rebooting.
The	seasoned	professional	troubleshooter	will	benefit	from	a	periodic	reminder	of	how	often	the	solution	is	something
simple.	That’s	me:	my	mind	loves	to	entertain	fantastic	and	novel	possibilities	that	fit	the	data.	On	the	other	hand,	those
new	to	the	game	will	benefit	from	having	their	horizons	opened	to	the	possibilities	of	subtle	and	complicated	failure
scenarios.

Prerequisites	For	Operation

Given	its	popularity,	I	was	bound	to	address	troubleshooting’s	most	famous	question:	 “Is	it	plugged	in?”	The	question,
and	brilliant	associated	solution:	“Plug	it	in!,”	is	an	example	of	a	broader	principle	called	“prerequisites	for
operation.”	Every	system	has	a	context	in	which	it	functions.	This	includes	the	conditions	required	for	it	to	work:	the
list	of	everything	that	has	to	be	“right”	and	present	(as	well	as	absent	conditions,	as	you’ll	see	later).	This	list	can	be
very	long	and	we	usually	aren’t	aware	of	just	how	many	things	are	needed	for	a	system	to	operate.	Frequently,	it’s	only
when	things	break	down	that	we	first	become	aware	of	the	dependencies	implicit	in	the	use	of	a	given	machine.

Take	a	gas-powered	motorcycle	and	consider	for	a	moment	some	of	these	hidden	prerequisites.	One	dependency	you
may	never	have	considered	is:	oxygen.	That’s	right,	your	typical	petroleum-powered	engine	relies	on	having	this
atmospheric	gas	present	in	abundance	to	mix	with	fuel	for	combustion.	If	you	shipped	your	Ducati	to	the	Moon,	it’s
not	going	to	work.	That’s	okay,	you	can	still	lean	up	against	it,	smoking	a	cigarette,	trying	to	look	cool.	Oh	no,
cigarettes	won’t	work	there	either!	Also,	imagine	if	there	were	no	gas	stations.	That	would	severely	limit	your
commuting	and	road	trip	options,	right?	You’ve	probably	never	thought	about	it	until	now,	but	an	abundance	of
oxygen	and	gas	stations	allow	a	motorcycle	to	operate	and	be	useful.

Is	It	Plugged	In?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 128

Beautiful,	but	it	will	not	run	on	the	Moon.
(image:	Tinou	Bao	/	CC-BY-2.0)

Oxygen	and	gas	stations	are	ubiquitous	over	most	of	the	world	(at	least	the	part	where	you’d	typically	drive	a
motorcycle),	so	you’re	probably	not	going	to	find	them	listed	as	“needed”	in	the	owner’s	manual.	My	point	is	that	the
missing	dependency	that	is	causing	a	failure	may	not	be	documented.	This	is	especially	true	for	any	custom-made
system,	where	you	can	create	an	entirely	unique	web	of	dependencies	from	the	parts	you	cobble	together	(e.g.,
a	server	farm	or	an	oil	refinery).	In	“The	Order	of	Things”	I	outlined	a	strategy	for	reducing	complexity	by	disabling
subsystems.	This	is	the	other	side	of	the	coin:	there	may	be	a	minimum	level	of	complexity	needed	for	the	system	to
function!

Do	I	Need	Any	Others	When	I’ve	Got	This	One?

At	first	glance,	the	strategy	of	fulfilling	prerequisites	seems	like	a	promising	candidate	for	The	One.	I’m	talking	about	a
singular	strategy	that	you	can	use	to	solve	any	troubleshooting	problem.	Indeed,	you	can	imagine	having	a	List	of
Everything	That	Must	Be	Right,	Present	and	Absent	for	a	particular	system.	You	could	then	methodically	go	through	this
list,	line-by-line,	to	make	the	machine	conform	to	the	specification.	It	would	be	beautiful:	there	would	no	longer	be
any	mystery	to	the	troubleshooting	process	and	fixing	things	would	always	be	a	certainty.	Great!	I’ll	just	put	my	feet	up
and	take	a	nap	while	you	write	up	that	list…

Done	yet?	Unfortunately,	such	a	document	can’t	exist	as	it	would	have	to	cover	an	infinite	number	of	possibilities	that
couldn’t	possibly	be	anticipated.	Ducatis	on	the	Moon	are	just	the	tip	of	the	iceberg	for	how	machines	will	get
deployed	in	scenarios	that	designers,	engineers,	and	technical	writers	can’t	anticipate.

The	“must	be	absent”	portion	of	the	list	is	where	the	problem	of	describing	operating	conditions	becomes	truly	infinite.
You	may	have	seen	an	example	of	negative	prerequisites	in	an	operator’s	manual	when	it	says	something	like:	“not	to
be	immersed	in	water.”	That’s	right,	in	addition	to	things	that	are	required,	many	devices	need	things	to	be	absent	to
operate	properly.	Will	a	particular	machine	work	when	submerged	in	water	or	covered	in	peanut	butter	or	placed	in	a
sealed	room	filled	with	helium	or	launched	into	outer	space	or	heated	to	1000°	C…?	Each	of	these	operational
scenarios	could	be	individually	tested	and	documented	(some	at	great	expense)	but	you	can	begin	to	see	that	it	would
be	impossible	to	cover	them	all	in	our	ideal	troubleshooting	guide.

Is	It	Plugged	In?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 129

http://www.flickr.com/photos/tinou/1349245640/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Server_farm
http://en.wikipedia.org/wiki/Oil_refinery
https://artoftroubleshooting.com/2011/09/28/the-order-of-things/
https://artoftroubleshooting.com/2013/03/30/one-size-doesnt-fit-all/

Sometimes,	this	isn’t	where	it	should	be…
(image:	Fajrina	Adella	/	Unsplash)

Back	To	Reality

Beyond	the	theoretical	problems	described	above,	where	does	the	“prerequisites	for	operation”	strategy	rank	in	the	real
world?	My	experience	is	that	the	effectiveness	of	this	strategy	has	a	big	front-loaded	payoff	(when	it	works).	Up	front,
merely	asking	the	question	“What	is	needed	for	this	machine	to	operate?”	will	uncover	things	like	unplugged	power
plugs	and	empty	gas	tanks.	Also,	the	manufacturer	may	have	given	you	a	list	of	prerequisites	in	their	product
documentation.	Given	their	much	deeper	experience	with	a	machine	through	the	phases	of	design,	testing,	and
support,	a	manufacturer’s	guidance	on	matters	of	prerequisites	are	usually	solid	gold.

After	that,	the	efficient	discovery	of	information	about	failures	seems	best	left	to	other	strategies,	versus	trying	to	dream
up	Everything	That	Must	Be	Right,	Present	and	Absent.	Life’s	too	short	to	go	that	route!

References:

Header	image:	“Guitar	wire	in	black	and	white”.	Juan	Di	Nella,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/OUgLA2unwtg.

Is	It	Plugged	In?	was	originally	published	February	14,	2012.

Notes:

Is	It	Plugged	In?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 130

https://unsplash.com/photos/fLdnru9geSw
https://unsplash.com/photos/OUgLA2unwtg

A	Different	Point	Of	View

A	fresh	set	of	eyes.	That’s	all	it	took.

Jamie	Karrick

If	you’re	buried	deep	in	a	troubleshooting	problem,	it’s	easy	to	get	stuck	in	a	rut.	Since	we	can	sometimes	talk
ourselves	into	confusing	pretzels,	my	guide	to	skillful	questioning	will	help	cut	through	the	muddy	words	often	used	to
describe	problems.	If	it’s	a	limiting	belief	expressed	through	language	that’s	holding	your	investigation	back,	those
techniques	will	help	you	detect	and	overcome	it.	While	the	language	patterns	are	powerful	and	can	clear	certain	types
of	roadblocks,	they	won’t	always	be	enough	to	get	you	past	a	stuck	point.	Sometimes,	the	description	of	a	problem	will
be	clear	and	yet	a	solution	will	continue	to	be	elusive.

To	get	over	the	hump,	consider	soliciting	an	outside	perspective.	Even	better,	multiple	outside	perspectives.	Here
“outside”	simply	means	“not	you”:	that’s	right,	anyone	that	isn’t	you	(or	on	your	team,	if	you’re	troubleshooting	with	a
group)	can	be	considered.	Asking	other	people	can	snap	you	out	of	the	trance	you’re	in	and	help	you	see	things	you
may	be	missing.

A	Different	Point	Of	View	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 131

https://artoftroubleshooting.com/2011/10/04/skillful-questioning-part-1/

When	you’re	stuck,	seek	a	new	perspective.
(image:	Ravi	Patel	/	Unsplash)

When	considering	the	benefits	of	other	perspectives,	Eric	Raymond’s	“Linus’	Law”	comes	to	mind:

Given	a	large	enough	beta-tester	and	co-developer	base,	almost	every	problem	will	be	characterized	quickly	and
the	fix	obvious	to	someone.	Or,	less	formally,	“Given	enough	eyeballs,	all	bugs	are	shallow.”

Eric	Raymond,	The	Cathedral	and	the	Bazaar 	1

Raymond	is	talking	about	the	world	of	software	development,	but	I’ve	found	the	principle	to	be	universal.	My	own
formulation	of	the	“many	eyeballs”	phenomenon	is:

For	every	problem,	there	is	someone	who	will	make	solving	it	look	(relatively)	easy.

Jason	Maxham,	The	Art	Of	Troubleshooting

So,	that’s	what	it	feels	like	to	quote	yourself.	It	wasn’t	as	good	as	what	I	had	built	up	in	my	mind…	Anyway,	the
“relatively	easy”	clause	is	important:	just	because	you	put	your	dilemma	in	front	of	lots	of	people	doesn’t	mean
someone	will	magically	come	up	with	a	brilliant	quick	fix.	Think	of	all	the	thousands	of	scientists	who	have	battled
cancer,	and	yet	a	cure	still	eludes	humanity.	The	benefit	of	“many	eyeballs”	is	extracting	the	most	from	the	experiences
of	others	and	generating	new	possibilities	for	solutions.	That	process	may	not	yield	a	definitive	answer,	but	hopefully
you’ll	be	pointed	in	the	right	direction.

There	are	five	types	of	relationships,	each	with	different	benefits,	which	will	generate	useful	feedback:

A	Different	Point	Of	View	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 132

https://unsplash.com/photos/2B5aWwADOn4

Graphic:	tradeoffs	when	soliciting	different	points	of	view.
(image:	©	Jason	Maxham)

1.	You

That’s	right,	you’re	at	the	center	of	the	circle—it’s	likely	that	no	one	knows	more	about	the	problem	you’re	working	on
than	you.	Have	you	gotten	the	most	out	what’s	in	your	head?	This	section	is	about	getting	a	new	perspective,	but	you
might	not	have	considered	that	a	different	point	of	view	can	come	from—within	you!	Have	you	ever	talked	to	one	of
these?

It’s	okay,	your	secret	is	safe	with	me	and	so	let	me	introduce	the	 “Rubber	Duck”	method.	This	is	where	you	explain
your	troubleshooting	problem	to	an	inanimate	object:	a	rubber	duck,	pencil,	the	ceiling,	etc.	Programmers	and	IT
professionals	have	long	used	this	technique	to	resolve	issues:

Another	effective	technique	is	to	explain	your	code	to	someone	else.	This	will	often	cause	you	to	explain	the	bug
to	yourself.	Sometimes	it	takes	no	more	than	a	few	sentences,	followed	by	an	embarrassed	“Never	mind,	I	see
what’s	wrong.	Sorry	to	bother	you.”	This	works	remarkably	well;	you	can	even	use	non-programmers	as	listeners.
One	university	computer	center	kept	a	teddy	bear	near	the	help	desk.	Students	with	mysterious	bugs	were
required	to	explain	them	to	the	bear	before	they	could	speak	to	a	human	counselor.

Brian	W.	Kernighan,	The	Practice	of	Programming	2

A	Different	Point	Of	View	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 133

http://en.wikipedia.org/wiki/Rubber_duck_debugging

A	great	conversation	partner.
(image:	longhorndave	/	CC	BY	2.0)

Something	special	happens	when	you’re	forced	to	verbalize	and	explain	your	problem	to	someone	else.	“Rubber
Ducking”	proves	that	you	don’t	even	need	another	person	to	get	a	different	perspective:	often	a	quick	conversation
with	yourself	is	all	that’s	required.

2.	Your	Peers,	Subordinates,	And	Managers

Besides	yourself,	these	people	are	most	likely	to	understand	the	details	of	and	be	sympathetic	to	the	troubleshooting
you’re	doing.	It	might	even	be	part	of	their	job	description	to	help	you	out!	What	you’re	hoping	is	for	them	to	say	“That
failed	on	me	last	week	too.	I	fixed	it	by	doing	this…”	Even	if	they	haven’t	encountered	your	problem	and	they	don’t
have	a	quick	fix,	plow	on	and	ask	them:	“How	would	you	solve	this	problem?”	Since	they	are	in	your	organization,
they	will	be	familiar	with	the	resources	(people,	tools,	etc.)	available	to	solve	the	problem.	For	that	reason,	the
questions	they	ask	and	suggestions	they	give	might	actually	be	useful.

Ironically,	it’s	even	better	if	they’re	a	little	bit	surly	about	the	whole	thing,	because	it	might	nudge	you	to	reconsider
things	you	missed.	Here,	we	can	take	a	lesson	from	Kevin	Dunbar’s	research	into	how	scientific	breakthroughs	are
made	(taken	from	an	article	in	Wired	on	the	benefits	of	failure):

Dunbar	found	that	most	new	scientific	ideas	emerged	from	lab	meetings,	those	weekly	sessions	in	which	people
publicly	present	their	data.	Interestingly,	the	most	important	element	of	the	lab	meeting	wasn’t	the	presentation	—
it	was	the	debate	that	followed.	Dunbar	observed	that	the	skeptical	(and	sometimes	heated)	questions	asked
during	a	group	session	frequently	triggered	breakthroughs,	as	the	scientists	were	forced	to	reconsider	data	they’d
previously	ignored.	The	new	theory	was	a	product	of	spontaneous	conversation,	not	solitude;	a	single	bracing
query	was	enough	to	turn	scientists	into	temporary	outsiders,	able	to	look	anew	at	their	own	work.

Jonah	Lehrer,	“Accept	Defeat”	3

I’ve	personally	observed	the	power	of	well-intentioned	pushback	while	investigating.	So,	go	forth	and	solicit	questions
and	comments,	“stupid”	or	otherwise,	from	your	colleagues!

3.	People	In	Your	Field/Industry/Occupation

A	Different	Point	Of	View	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 134

http://www.flickr.com/photos/davidw/380277419/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.wired.com/magazine/2009/12/fail_accept_defeat/all/1

One	stage	removed	from	people	in	your	organization	are	people	in	your	industry	or	who	share	your	occupation.	They
might	be	working	at	a	competitor	or	have	retired	long	ago.	Included	in	this	category	are	former	co-workers,	bosses,
mentors,	teachers,	professors,	etc.	These	contacts	can	be	really	valuable	for	troubleshooting	because	they	will	be	used
to	solving	similar	problems	using	similar	tools.	However,	because	they	have	been	at	a	different	organization	(or
worked	in	a	different	era),	they	might	do	things…differently.	That’s	great,	because	seeking	out	what’s	“different”	is	what
this	section	is	all	about.	If	they’re	working	at	a	competitor,	they	might	not	share	their	secret	formula	with	you,	but
you’d	be	surprised	at	the	amount	of	help	available	to	you	in	a	crisis,	if	you	just	ask.

Included	in	this	level	are	technical	contacts	at	your	vendors,	who	typically	will	have	worked	with	others	in	your
industry	and	will	therefore	have	a	similar	breadth	of	knowledge.	Also,	because	they	“work	for	you,”	they’ll	be
motivated	to	help	you	out	and	may	be	less	guarded	about	sharing	information	than	a	direct	competitor.

It’s	important	to	set	up	these	contacts	in	advance	and	maintain	these	relationships,	so	think	about	opportunities	to
network	and	build	contacts	through	industry	associations,	trade	groups,	conferences,	trainings,	etc.

4.	People	In	Related	Fields/Industries/Occupations	And	Those	Who	Use	The	Same	Tools

Still	useful,	but	further	out,	are	people	who	work	in	a	related	field.	They	will	be	familiar	with	the	problems	you	are
trying	to	solve,	but	at	a	more	abstract	level.	For	example,	an	auto	mechanic	and	an	airplane	mechanic	will	have	this
type	of	relationship.	People	in	related	fields	are	great	to	bounce	ideas	off	because	they	will	likely	have	very	different
solutions.	Given	the	economics	involved	they	may	have	fixes	that	simply	aren’t	feasible	for	your	situation,	but	there’s
no	downside	in	asking	for	their	perspective.

People	who	use	your	same	tools,	machines	or	processes	(but	work	in	a	completely	unrelated	field)	can	also	be
included	in	this	tier.	If	you’re	a	toymaker	that	uses	the	same	type	of	industrial	robots	as	the	automobile	manufacturer
next	door,	you’ve	got	something	very	important	in	common,	especially	when	those	robots	break	down.

5.	Everyone	Else

Consider	presenting	your	problem	to:	a	doctor,	a	physicist,	a	biologist,	a	psychologist,	a	mechanic,	a	programmer,	an
artist,	a	musician,	a	carpenter,	an	electrician,	etc.	How	would	they	solve	your	issue	with	the	resources	and	strategies
with	which	they	are	familiar?	The	answers	from	this	tier	will	be	the	most	hit-or-miss.	However,	the	payoff	can	be	huge:
there’s	a	long	and	storied	history	of	cross-pollination	of	ideas	from	seemingly	unrelated	fields.	For	instance,	Eugene
Stoner	took	his	experience	using	lightweight	materials	like	aluminum	for	building	aircraft	and	applied	them	to	firearms
to	create	the	iconic	M-16	assault	rifle.	Builder	François	Hennebique	saw	how	gardener	Joseph	Monier	was	using	steel
reinforced	concrete	for	his	planters	and	it	led	to	the	amazing	skyscrapers,	bridges	and	dams	we	see	in	the	world	today.
Especially	for	very	difficult	or	chronic	troubleshooting	problems,	you	may	need	the	insights	of	someone	in	a
completely	different	universe.

You	might	be	saying	“There’s	no	way	I’m	going	to	ask	a	musician	how	to	troubleshoot	a	fuel	injection	system.”	Thanks
for	the	great	segue:

Just	Grab	Someone,	Anyone!

You	can	involve	someone	who	knows	“nothing”	about	your	problem	with	a	technique	I	call	 “get	someone	to	ask
stupid	questions.”

If	you’ve	hit	a	wall,	go	grab	someone	who	you’re	sure	can’t	help	(like	someone	who	works	in	“HR,”	“marketing,”	or
“management”).	Briefly	explain	the	problem,	tell	them	you’re	stuck	and	then	say,	“Go	ahead,	ask	me	some	stupid
questions	to	help	me	figure	this	out.”	They’ll	probably	start	with	something	like	“Is	it	plugged	in?”	(is	it?)	and	so	you’re
probably	thinking	“How	is	this	even	remotely	useful?”

Here’s	what	I’ve	learned:	it	doesn’t	actually	matter	what	they	ask	you,	but	it	frequently	works	to	get	your	mind	pointed
in	a	new	direction.	I’ve	personally	come	up	with	breakthroughs	in	the	middle	of	an	“ask	stupid	questions”	session	with
a	co-worker.	You’ve	gone	over	the	same	facts	and	solutions	in	your	mind	a	million	times;	this	exercise	breaks	through
the	trance	you’re	in	and	the	mental	loops	you	may	be	running.	Having	to	answer	stupid	questions	gets	you	out	of	your
head,	and	forces	you	to	consider	the	problem	from	a	different	point	of	view.

This	section	is	all	about	new	perspectives,	and	having	to	explain	something	complicated	to	someone	who	knows

A	Different	Point	Of	View	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 135

http://www.tenfacesofinnovation.com/tenfaces/index.htm#crosspol
http://en.wikipedia.org/wiki/Eugene_Stoner
http://en.wikipedia.org/wiki/Fran%25C3%25A7ois_Henn%25C3%25A9bique
http://en.wikipedia.org/wiki/Joseph_Monier

nothing	about	your	work	will	force	your	mind	to	consider	a	new	point	of	view.	Even	if	the	perspective	your	colleague
is	offering	isn’t	very	useful,	your	subconscious	will	get	the	metaphor:	there’s	probably	another	way	to	look	at	the
problem.	Again,	I’ve	found	that	just	a	few	minutes	of	“stupid	questions”	will	be	enough	to	get	me	going	in	a	better
direction.	Try	it!

References:

Header	image:	“Four	trees	from	below.”	Adam	Nieścioruk.	Retreived	from	Unsplash,
https://unsplash.com/photos/53KPnkKjkAY.
1	Eric	Raymond,	The	Cathedral	and	the	Bazaar,	“Release	Early,	Release	Often.”
2	Brian	W.	Kernighan,	The	Practice	of	Programming	(New	York:	Addison-Wesley	Professional,	1999),	pg.	123.
3	Jonah	Lehrer,	“Accept	Defeat,”	Wired,	January,	2010.

A	Different	Point	Of	View	was	originally	published	February	20,	2012.

Notes:

A	Different	Point	Of	View	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 136

https://unsplash.com/photos/53KPnkKjkAY
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/ar01s04.html
http://www.wired.com/magazine/2009/12/fail_accept_defeat/all/1

Same	Symptom,	Different	Causes

If	you	fixed	one	car,	you	fixed	all	of	them.	Still,	you	don’t	want	it	to	come	back	and	bite	you,	because	you	can
have	the	same	symptom	and	two	different	problems.

Dan	McCormick

One	of	the	more	confusing	things	to	explain	is	that	a	machine	is	broken	“just	like	last	time,”	but	this	time	the	 cause	is
entirely	new.	Trust	me,	this	is	equally	confusing	to	the	troubleshooter	who	had	to	figure	it	out.	I	think	most	people
would	prefer	a	simple	“only	A	causes	B”	explanation	that	is	consistent	over	time.	But,	just	like	in	life,	you	can	end	up
in	the	same	place	again,	even	though	you	took	a	different	path	to	get	there.

One	Or	More

If	you	troubleshoot	long	enough,	you’ll	eventually	experience	systems	with	multiple	internal	failures.	However,	even
though	there	may	be	several	things	that	need	to	be	remedied,	this	kind	of	situation	often	manifests	itself	in	just	a
single	external	symptom.	A	car	with	a	dead	battery	and	an	empty	fuel	tank	will	not	work	just	like	a	car	with	a
dead	battery	or	an	empty	fuel	tank.	This	gets	back	to	our	typical	experience	of	failures,	where	surface-level	symptoms
and	what	we	are	prevented	from	accomplishing	looms	the	largest	in	our	minds.

Let’s	work	through	an	example	and	think	deeper	about	situations	involving	multiple	failures.	You	have	a	string	of	3	red
lights,	which	you	have	deployed	in	hopes	of	creating	a	festive	atmosphere	for	a	party.	The	string	of	lights	is	wired	such
that	all	of	the	lights	must	individually	work	for	the	string	to	be	lit	(i.e.,	if	one	goes	out,	the	whole	string	goes	out).

Same	Symptom,	Different	Causes	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 137

You’ve	had	them	up	in	your	dorm	room,	but	after	your	all-weekend	rager,	they	no	longer	work.

Diagram:	a	string	of	3	lights,	trusty	enablers	of	a	party	ambiance.
(image:	©	Jason	Maxham)

After	you’ve	nursed	your	hangover,	you	want	to	show	off	your	troubleshooting	skills	to	your	roommate.	Consequently,
you	decide	to	use	a	strategy	of	serially	replacing	each	of	the	lights	with	a	spare.	You’ll	swap	each	lightbulb,	one	at	a
time,	retesting	to	see	if	the	string	works	after	each	swap.	If	swapping	a	specific	lightbulb	doesn’t	work,	you’ll	put	the
string	back	the	way	you	found	it	and	move	on	to	the	next	light.

As	your	omniscient	narrator,	I’ll	tell	you	that	the	state	of	the	broken	system	is	thus:

BULB	#1:	FAILED
BULB	#2:	FAILED
BULB	#3:	WORKING

As	you	can	see,	a	serial	swap,	test,	and	reset	strategy	won’t	bring	this	system	back	to	a	working	state	because	there	are
multiple	lightbulb	failures.	Of	course,	you	don’t	know	that	and	so	you	grab	a	spare	bulb	and	begin	the	swapping
process:

1.	 You	swap	out	BULB	#1	with	the	spare.	Test.	The	lights	don’t	work	(#2	is	also	failed),	so	you	put	the	original	BULB
#1	back	in.

2.	 You	swap	out	BULB	#2	with	the	spare.	Test.	The	lights	don’t	work	(#1	is	also	failed),	so	you	put	the	original	BULB
#2	back	in.

3.	 You	swap	out	BULB	#3	with	the	spare.	Test.	The	lights	don’t	work	(#1	and	#2	are	failed),	so	you	put	the	original
BULB	#3	back	in.

You	would	be	scratching	your	head	at	this	point,	but	go	where	logic	leads	you:	the	problem	is	not	likely	a	 single	failed
bulb.	After	your	swapping	exercise,	the	remaining	possibilities	are:

There	are	multiple	failed	lightbulbs	on	the	string.
The	spare	bulb	is	faulty.	By	the	way,	this	is	the	reason	you	should	always	use	“known	working	parts”	as
replacements:	swapping	a	working	part	with	a	broken	one	increases	the	number	of	failures	to	be	discovered	and
remedied.	Unless	you	like	making	more	work	for	yourself!

Same	Symptom,	Different	Causes	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 138

The	problem	with	the	string	of	lights	lies	elsewhere,	like	maybe	the	outlet	you’re	plugging	into	doesn’t	have
electricity.

One	way	to	get	clarity	on	the	state	of	the	bulbs	is	to	reverse	the	process	and	take	them	out	of	the	 failed	string	and	place
them	into	another	working	string.	Putting	BULB	#1	into	a	working	string	will	cause	that	string	to	fail,	showing	you	that
BULB	#1	is	defective.	You	can	test	all	of	the	bulbs	(including	the	spare)	this	way:	it’s	a	play	right	out	of	“Copy	One
That	Works.”

Running	The	Numbers

Given	that	troubleshooting	is	about	playing	the	odds,	what	can	we	learn	about	scenarios	involving	multiple	failures?
Are	they	likely	and	is	it	worth	looking	for	them?	Let’s	try	to	get	a	sense	of	the	probabilities	involved.	We’ll	stick	with
our	example	of	that	string	of	stylish	red	lights,	starting	by	listing	all	of	the	possible	states	of	these	3	bulbs:

Scenario	# Bulb
Status Total	Failures Overall	Status

Bulb	#1 Bulb	#2 Bulb	#3

1 OK OK OK 0 OK

2 OK OK FAULT 1 FAULT

3 OK FAULT OK 1 FAULT

5 FAULT OK OK 1 FAULT

4 OK FAULT FAULT 2 FAULT

6 FAULT OK FAULT 2 FAULT

7 FAULT FAULT OK 2 FAULT

8 FAULT FAULT FAULT 3 FAULT

You	can	see	there	are	8	unique	possibilities	for	how	these	3	bulbs	can	be	functioning	or	broken.	We	said	this	particular
system	requires	all	3	bulbs	to	be	working	for	the	system	as	a	whole	to	operate.	Given	that,	note	that	only	one	of	these	8
possibilities	will	result	in	a	working	string	of	lights!	Wow.	One	way	to	be	right	and	7	ways	to	be	wrong.

This	is	a	great	illustration	of	a	fascinating	troubleshooting	principle:	while	there	are	typically	an	infinite	number	of
ways	for	a	machine	to	be	screwed	up,	there’s	often	only	a	few	ways	for	it	to	be	right.	This	is	yet	another	buttress	to	the
“change	just	one	thing	at	a	time”	principle	and	a	reminder	of	why	a	bias	for	minimalism	should	be	guiding	your
repairs.	The	more	mucking	around	you	do,	the	greater	the	chances	you	will	be	adding	to	that	infinite	realm	of	possible
defects.

Next,	let’s	tally	up	how	many	of	the	above	scenarios	have	0,	1,	2,	or	3	total	failures:

Fault	Count #	Scenarios %	of	All
Scenarios Overall	Status

0 1 12.5% OK

1 3 37.5% FAULT

2 3 37.5% FAULT

3 1 12.5% FAULT

The	tally	line	with	a	fault	count	of	“0”	is	the	working	state,	which	as	stated	above	is	only	1/8th	(12.50%)	of	the	total
number	of	possibilities.	The	next	line,	with	a	fault	count	of	“1,”	are	our	singular	failures	(37.50%	of	all	possibilities).
The	remaining	two	entries	(marked	“2”	and	“3”)	are	our	multiple	failure	scenarios:	you	can	see	that	they	represent	50%
(37.50%	+	12.50%)	of	the	possibilities.	If	each	of	these	failure	scenarios	was	equally	likely,	we	wouldn’t	be	having
parties	very	often.	Can	you	imagine	buying	a	machine	that	only	worked	12.5%	of	the	time?!

Don’t	get	discouraged,	most	machines	will	seemingly	favor	non-operation	when	going	by	a	raw	count	like	in	the	table
above.	However,	after	weighting	the	scenarios	by	their	actual	likelihood	of	failure,	we	find	that	they	are	not	all	equally

Same	Symptom,	Different	Causes	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 139

https://artoftroubleshooting.com/2012/04/16/copy-one-that-works/
https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/

likely.	Continuing	with	our	example,	if	we	assume	that	each	of	these	bulbs	has	a	1	in	10,000	chance	of	failing	(per
time	unit	in	use),	the	likelihood	of	failures	involving	various	combinations	of	bulbs	is	much	different:

Scenario	# State
% Combined	Probability Overall	Status

Bulb	#1 Bulb	#2 Bulb	#3

1 99.99% 99.99% 99.99% 99.9700029999% OK

2 99.99% 99.99% 0.01% 0.0099980001% FAULT

3 99.99% 0.01% 99.99% 0.0099980001% FAULT

5 0.01% 99.99% 99.99% 0.0099980001% FAULT

4 99.99% 0.01% 0.01% 0.0000009999% FAULT

6 0.01% 99.99% 0.01% 0.0000009999% FAULT

7 0.01% 0.01% 99.99% 0.0000009999% FAULT

8 0.01% 0.01% 0.01% 0.0000000001% FAULT

Just	like	before,	we	can	combine	the	probabilities	to	get	a	sense	of	the	relative	chance	of	single	versus	multiple	failures:

Fault	Count #	Scenarios Combined	Probability Overall	Status

0 1 99.9700029999% OK

1 3 0.0299940003% FAULT

2 3 0.0000029997% FAULT

3 1 0.0000000001% FAULT

If	a	bulb	failure	was	the	only	thing	that	could	be	wrong	with	our	fabulous	string	of	lights,	we	can	see	it	will	be
operational	most	of	the	time	(99.97%).	Also,	note	that	the	single	failure	scenario	(fault	count	=	1)	is	by	far	the	most
likely	among	the	various	faults	listed.	By	how	much?	Well,	let’s	calculate	the	ratio	between	the	single	and	multiple
failure	scenarios	to	find	out.	We	take	the	probability	of	a	single	failure	(0.0299940003%)	and	divide	it	by	the	sum	of
the	“2”	and	“3”	tally	lines	(0.0000029997%	+	0.0000000001%	=	0.0000029998%):

0.0299940003%	÷	0.0000029998%	=	9998.66

This	result	shows	the	chance	of	encountering	a	 single	failure	is	nearly	10,000	times	more	likely	than	all	of	the	multiple
failure	scenarios	combined!	Now	that	is	actionable	intelligence.	Given	the	huge	drop-off	in	probability	from	one	to
two	failures	(and	then	again	from	two	to	three	failures)	you	can	see	it	wouldn’t	make	sense	to	test	all	the	bulbs	if	the
test	was	time-consuming	or	expensive.	The	odds	favor	stopping	and	retesting	after	identifying	that	first	failed	bulb.

Back	to	our	example,	the	failure	of	the	serial	replacement	strategy	opened	the	door	to	the	possibility	of	two	or	more
bad	bulbs.	However,	as	soon	as	you	had	identified	a	second	failed	bulb,	it	would	be	wise	to	stop	and	retest.	Given	the
truly	unlikely	scenario	of	3	burnt-out	bulbs,	it	doesn’t	make	sense	to	pursue	it	without	additional	evidence.

A	Lack	Of	Independence

We’ve	made	one	key	assumption	in	the	calculation	of	the	statistics	above:	that	a	lightbulb	burning	out	is
an	independent	event.	That	is,	if	one	light	bulb	burns	out	it	doesn’t	affect	the	probability	of	another	doing	the	same.
When	this	is	true,	it	leads	to	the	statistics	above	favoring	the	single	failure.	Troubleshooting	in	the	real	world,	I	caution
you	against	making	this	assumption	without	evidence.	The	machines	that	fill	our	world	are	deeply	interconnected
systems,	full	of	dependencies	and	linkages,	both	within	themselves	and	to	the	larger	context	in	which	they	are	used.

Same	Symptom,	Different	Causes	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 140

http://en.wikipedia.org/wiki/Independence_(probability_theory)

Whether	you	arrived	from	the	right	or	the	left,	you	still	ended	up	in	the	same	place.	Multiple	paths,	one
destination,	just	like	some	troubleshooting	problems	you’ll	encounter.

(image:	Lance	Fuller)

Even	for	the	simple	case	of	a	string	of	lights,	it’s	easy	to	think	of	instances	where	multiple,	coincident	lightbulb	outages
are	not	independent	events:	a	tripped	breaker,	an	electrical	surge	blowing	the	bulbs,	a	frayed	wire	in	the	plug	leading
to	an	open	circuit,	a	manufacturing	defect	in	this	particular	batch	of	bulbs,	etc.	I	keep	stressing	the	importance	of
context	when	troubleshooting,	because	it	allows	you	to	correctly	classify	a	problem	and	choose	the	most	efficient
strategy.	Encountering	highly	improbable	multiple	failures	is	a	signal	that	you	may	have	missed	an	important	shared
connection:	these	are	opportune	moments	to	step	back	and	consider	systemic	causes	(and	solutions).

References:

Header	image:	Hush	Naidoo,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/yo01Z-
9HQAw.

Same	Symptom,	Different	Causes	was	originally	published	March	13,	2012.

Notes:

Same	Symptom,	Different	Causes	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 141

https://artoftroubleshooting.com/2013/04/13/a-common-problem/
https://unsplash.com/photos/yo01Z-9HQAw

Improving	the	Environment

Frustration	is	actually	a	productive	emotion.	It’s	there	because	there’s	something	is	in	your	way...	Being
uncomfortable	can	help	with	that.

Alex	Chaffee

You	probably	thought	this	was	going	to	be	about	old-growth	forests,	endangered	species,	global	warming	or	water
rights.	However,	in	the	context	of	troubleshooting,	when	I	say	“improve	the	environment,”	I	mean	your	environment!

File	under	“obvious,”	but	upgrading	the	conditions	under	which	you	troubleshoot	can	significantly	improve	your
chances	of	finding	a	timely	solution.	Vice	versa,	an	inhospitable	or	distracting	environment	can	work	against	you	and
significantly	delay	finding	a	fix.	First,	let’s	observe	that	many	machines	are	in	locations	not	among	the	most
comfortable	on	earth.	For	example,	during	my	time	in	the	IT	world,	I	spent	my	fair	share	of	time	in	colocation	facilities
(aka,	“colos”).	These	are	places	where	companies	buy	or	rent	space	to	house	their	computers.	Colos	are	spartan	and
austerely	beautiful	places	that	are	designed	for	one	purpose:	to	keep	computers	running	smoothly.	Along	that	front,
they	have	abundant	resources:	backup	power	generators,	redundant	Internet	connections	and	enough	air	conditioning
to	recreate	Arctic	conditions.	I	guess	you	could	say	that	everything	has	its	ideal	setting:	a	rattlesnake	is	probably
happiest	while	sunning	itself	on	a	rock	in	the	desert,	a	polar	bear	prefers	an	iceberg,	and	a	frog	on	a	lily	pad	in	a
swampy	pond	feels	quite	content.	Likewise,	I	always	imagined	my	computers	smiling	from	ear-to-ear	when	I	placed
them	in	a	well-equipped	colo.	Uninterruptible	power,	ample	cooling,	and	a	fast	network:	what	else	could	a	server
want?

Improving	the	Environment	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 142

http://en.wikipedia.org/wiki/Colocation_centre

You	probably	don’t	want	to	linger	here.	Many	industrial	locations	are	built	for	machines,	not	humans.	
(image:	Alfred	T.	Palmer	/	Library	of	Congress)

What	a	server	wants	is	probably	different	from	your	own	desires.	What	are	colos	and	other	industrial	environments
typically	not	designed	for?	That’s	right,	humans.	When	you’re	in	a	giant	room	filled	wall-to-wall	with	servers,	your	ears
will	be	violated	by	the	deafening	whoosh	of	thousands	of	cooling	fans.	The	low-frequency	electrical	hum	from	all	that
power	being	transformed	into	computing	cycles	will	start	to	lull	you	to	sleep.	If	you’re	working	anywhere	near	the	A/C
vents,	cold	air	will	blast	you	and	remind	you	to	put	your	jacket	back	on.	Alternatively,	if	you’re	standing	behind	a	rack
of	servers	expelling	the	heat	from	hundreds	of	CPUs	and	disk	drives,	you	will	feel	like	you’re	on	a	tropical	island	and
wish	you	had	worn	shorts.	Oh,	and	there’s	no	comfortable	place	to	sit	either.	Personally,	in	a	setting	like	this,	I	feel	my
problem-solving	skills	are	degraded	because	my	mind	is	distracted	by	these	environmental	factors.	For	these	reasons,	I
strongly	disliked	troubleshooting	at	the	colo	and	my	subconscious	agenda	was	always	to	get	in	and	get	out	as	soon	as
possible.

Here	are	some	environmental	conditions	that	will	impact	your	troubleshooting	abilities:

Light:	of	course,	you’re	better	off	if	you	can	clearly	see	what	you’re	working	on.	If	you	can’t	use	artificial	light	and
it’s	night,	sometimes	it’s	best	to	wait	for	day.
Sound:	noisy	environments	are	fatiguing	and	will	make	communication	difficult	if	you’re	troubleshooting	with	a
team	(or	taking	instructions	over	the	phone).
Space:	the	area	around	a	broken	system	must	be	large	enough	to	accommodate	your	team	and	equipment.
Temperature:	extremes	of	hot	or	cold	will	negatively	affect	your	physiology,	making	repairs	more	challenging.
These	type	of	conditions	can	also	be	hard	on	your	tools.
The	Elements:	fixing	things	while	exposed	to	the	wind,	rain,	or	sun	will	require	Nature’s	cooperation.
Safety:	troubleshooting	amidst	hazards,	man-made	or	natural,	can	be	very	dangerous.	Examples;	working	on	a	car
while	it’s	stuck	in	the	middle	lane	of	a	busy	highway,	or	perched	near	the	edge	of	a	cliff.
Business	Requirements:	the	need	of	a	firm	to	continue	operating	normally	may	constrain	when	or	how	you	work.
When	repairs	will	be	a	hindrance,	because	of	the	noise,	mess,	or	interruption,	be	prepared	to	work	after	the	close
of	business.
Scrutiny:	the	need	to	maintain	a	professional	demeanor	may	clash	with	your	ability	to	efficiently	get	the	job	done.
This	tension	is	most	often	felt	when	you’re	forced	to	work	in	close	contact	with	a	customer.	You	might	encounter	a
personality	conflict,	perhaps	with	a	client	who	likes	to	micromanage.	Likewise,	a	repair	might	require	something
experimental	or	messy	that,	to	the	untrained	eye,	may	cause	alarm.	People	may	not	understand	that

Improving	the	Environment	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 143

http://www.loc.gov/pictures/resource/fsac.1a35063/

troubleshooting	requires	improvisation,	thoughtful	pauses	to	reflect,	and	frequent	course	corrections.	Put	another
way,	there’s	a	good	reason	that	sausage	is	made	behind	closed	doors.
Time:	an	important	dimension	that	will	affect	all	of	the	conditions	listed	above.	Daylight,	temperature,	tides,
weather	patterns,	sleepiness,	fatigue,	crowds,	etc.	will	all	ebb	and	flow	with	the	passage	of	time.	You	will	need	to
deal	with	environmental	factors	the	right	way	and	at	the	right	time.

Must	we	troubleshoot	out	in	this?
(image:	Donna	B.	Cooper	/	CC	BY-ND	2.0)

Given	that	the	environment	will	either	help	or	hinder	troubleshooting,	you’ll	always	want	to	be	on	the	lookout	for
opportunities	to:

Make	the	current	environment	more	hospitable.
Change	venues	and	continue	working	elsewhere.

Please	Turn	On	The	Lights

If	you’re	troubleshooting	at	the	site	of	a	failure,	your	ability	to	modify	the	environment	to	suit	your	needs	may	be
limited.	Even	so,	you	can	typically	make	some	improvements.	I	can’t	tell	you	the	number	of	times	I	have	found	a	group
of	engineers	squinting	at	a	problem	in	a	darkened	room.	Oh,	the	look	of	wonder	and	awe	in	their	eyes	when	I	would
triumphantly	flip	the	light	switch	on,	exclaiming	“Let	there	be	light!”	Sometimes,	I	would	say	it	in	Latin	(“Fiat	Lux!”)
and	the	look	they’d	give	me	was,	“Who’s	this	crazy	guy	turning	on	lights	and	shouting	things	in	Latin?”

In	Latin	or	English,	turning	on	the	lights	so	you	can	actually	see	what	you’re	doing	might	have	the	highest
improvement-to-effort	ratio	when	it	comes	to	upgrading	your	conditions.	Others	will	typically	involve	a	tradeoff
(usually	time	or	money).	Sometimes,	it	might	be	very	difficult	to	make	even	trivial	changes	to	the	place	where	you’re
troubleshooting.	What	if	turning	on	the	lights	involves	something	complicated	like	finding	someone	who	can	operate
the	automated	building	management	system	(like	in	a	stadium)?	For	those	cases,	you’d	probably	wish	you	had	brought
along	your	flashlight!

Improving	the	Environment	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 144

http://www.flickr.com/photos/yayaempress/219184124/
http://creativecommons.org/licenses/by-nd/2.0/deed.en

Some	equipment	isn’t	very	portable.
(image:	Haakman	/	CC	BY	3.0)

Where	The	Grass	Is	Greener

When	circumstances	favor	relocating	to	a	place	where	repairs	will	be	easier,	faster,	cheaper,	etc.,	the	factors	will
typically	involve:

The	need	for	specialized	or	cumbersome	equipment	that	can’t	be	brought	on-site.
Repairing	at	the	scene	would	either	be	unsafe,	uncomfortable,	or	disrupt	business	with	your	presence.
Downtime	is	so	costly	that	repairs	can’t	be	done	 in	situ.	The	faulty	piece	of	equipment	must	be	removed
immediately	so	that	a	spare	can	be	deployed.
Better	scheduling:	repairing	on-site	may	constrain	you	to	the	operating	hours	of	the	business.
Stepping	out	of	the	spotlight:	it’s	always	better	to	be	able	to	do	your	work	(and	make	those	inevitable	mistakes)
without	having	a	customer	breathe	down	your	neck.

Again,	the	decision	to	relocate	will	involve	tradeoffs	and	have	an	economic	component.	Clearly,	if	you	knew	in
advance	that	a	fix	could	be	completed	in	just	a	few	minutes,	then	bringing	a	machine	back	to	your	workshop	an	hour
away	would	be	a	waste	of	time.	On	the	other	hand,	if	it	took	a	3	weeks	to	find	the	answer,	you’d	probably	be	wishing
on	the	third	day	that	you	had	changed	venues	sooner.	For	this	reason,	you	can’t	say	“Never	relocate!”	or	“Always
relocate!”	I	am	only	here	to	remind	you	of	the	possible	benefits	of	changing	locations	to	your	workshop.

For	me,	the	benefit	of	a	venue	change	was	both	physiological	and	psychological.	It	was	cold,	loud,	and	lonely	in	the
colo.	I	couldn’t	throw	Toto	on	the	stereo,	make	some	tea	to	help	me	think,	or	easily	bounce	an	idea	off	a	fellow	co-
worker.	However,	I	never	let	my	desire	for	creature	comforts	get	the	best	of	me.	Remember,	when	you	retreat	with	a
broken	machine	to	your	deluxe,	climate-controlled	workshop	you	must	eventually	return	to	the	same	place	with	a	fix.
Don’t	use	a	venue	change	as	a	stalling	tactic.	Furthermore,	while	moving	a	machine	may	make	you	more	comfortable,
it	also	might	be	a	colossal	waste.	Time	should	be	among	your	most	precious	resources,	and	conserving	it	will
sometimes	mean	standing	and	fighting.	On-site.

References:

Header	image:	“Construction	helmets”.	Pop	&	Zebra,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/wp81DxKUd1E.

Improving	the	Environment	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 145

http://commons.wikimedia.org/wiki/File:TAISUN_with_SCARABEO_9.JPG
http://creativecommons.org/licenses/by/3.0/deed.en
http://en.wikipedia.org/wiki/Toto_%2528band%2529
https://unsplash.com/photos/wp81DxKUd1E

Improving	the	Environment	was	originally	published	March	20,	2012.

Notes:

Improving	the	Environment	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 146

Copy	One	That	Works

Copy,	paste,	and	tweak:	that’s	a	technique	as	old	as	time...	You	don’t	have	to	understand	it.	It’s	expedient	and	it
feels	dirty,	but	it	works.	Up	to	a	point.

Alex	Chaffee

When	I	first	began	to	repair	computers,	I	quickly	discovered	the	value	of	having	a	working	computer	next	to	one	that
was	broken.	Even	better	if	the	machine	that	was	working	happened	to	be	the	exact	same	make	and	model	as	the
broken	one.	For	starters,	a	working	computer	could	access	the	Internet	so	I	could	look	at	manuals	and	search	forums
for	other	people	experiencing	the	same	problem.	However,	the	advantages	went	way	beyond	that.

Having	“one	that	works,”	a	functioning	copy	of	something	broken,	gives	you	the	ability	to	swap	parts	between	the	two
machines	in	an	attempt	to	isolate	a	failing	component.	If	you	think	a	particular	part	is	the	culprit,	you	can	easily	test
your	hypothesis	by	taking	it	from	the	working	machine	and	putting	it	in	the	broken	one	(and	vice	versa).

A	working	version	is	also	useful	as	a	model	to	copy.	In	our	lives,	we	employ	the	principle	of	modeling	all	the	time.	If
you	meet	someone	who	is	successful	at	something	you	aspire	to,	you	want	to	ask	them:	“What	steps	did	you	take	to	get
where	you	are?”	The	idea	being,	if	you	took	a	similar	path,	you	could	recreate	what	they’ve	done.	If	someone	serves
you	a	bacon-topped	donut	(what	a	friend!),	you	may	feel	compelled	to	inquire	about	the	recipe,	with	the	hopes	you
can	pull	it	off	in	your	own	kitchen	(a	recipe	is	a	model,	too).	Working	machines	can’t	answer	questions	about	why
they’re	“successful,”	but	you	can	observe	them	and	infer	things	about	how	they	function.	A	working	model	is	the	basis
from	which	to	take	measurements,	see	where	parts	are	located,	watch	normal	operation,	and	copy	configurations	and

Copy	One	That	Works	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 147

http://en.wikipedia.org/wiki/Maple_bacon_donut

settings.	What’s	different	between	the	working	one	and	the	broken	one?

Twinsies!	Having	an	identical	one	around	might	threaten	your	sense	of	originality,	but	actually	it’s	great	for
troubleshooting.

(image:	Matthew	Rutledge	/	CC	BY	2.0)

Again,	Just	One	Thing

Be	sure	to	only	change	one	thing	at	a	time	when	you’re	swapping	anything	between	a	machine	that	works	and	a
machine	that’s	broken.	Always	retest	for	the	failed	condition	after	you	make	a	change.	If	you	replace	two	or	more
components	simultaneously,	and	it	suddenly	works,	how	will	you	know	which	change	actually	solved	the	problem?
That’s	right,	you	won’t.

Proceed	cautiously	with	your	working	copy,	especially	if	it’s	your	only	one	on	hand.	Make	sure	you	reverse	any
changes	you	make	to	your	model	before	proceeding	to	test	a	new	theory.	Tearing	apart	your	functional	clone	is	like
messing	around	with	your	life	raft	while	adrift	at	sea.	Having	two	broken	machines	is	much	worse	than	one,	especially
if	you	intended	to	use	the	working	one	for	actual	work	while	you	fixed	the	broken	one.

Warning:	Corruption	Can	Occur

While	swapping	components	is	a	great	strategy	for	isolating	and	testing	suspect	parts,	be	aware	that	sometimes
transferring	a	working	component	to	a	failed	system	will	destroy	the	part.	For	instance,	if	you	have	a	dodgy	power
supply	that	has	burned	out	a	motherboard,	and	you	swap	a	fresh	motherboard	from	a	working	computer…well,	there
goes	another	motherboard!	As	noted	above,	try	to	think	a	few	steps	ahead	with	regards	to	your	working	replica:	if
accidentally	destroying	“the	one	that	works”	will	leave	you	in	a	desperate	situation,	you	should	avoid	swapping	parts.
Since	this	decision	is	highly	contextual,	you’ll	have	to	use	your	best	judgement	about	the	risks	and	rewards	of	trading
components.

Copy	One	That	Works	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 148

http://www.flickr.com/photos/rutlo/4458158282/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/

On	the	outside,	they	may	look	identical.	But	under	the	hood,	is	everything	really	the	same?
(image:	Hugo90	/	CC	BY	2.0)

Weird	Stuff

You	would	think	that	having	a	pair	of	identical,	working	machines	would	allow	you	to	move	parts	between	them	with
no	change	in	the	working	status	of	either	system.	That’s	what	you’d	think,	but	you’d	often	be	wrong!	When	it	comes	to
swapping	parts	among	identical	machines,	a	down-to-the-atom	level	of	similarity	is	an	ideal	that	you’ll	never	reach
(although	the	nanotech	industry	is	working	on	it).	You	never	really	have	two	“identical”	systems	to	swap	parts	between.
Sure,	they	may	be	the	same	make	and	model	year.	Heck,	they	might	even	have	rolled	off	the	assembly	line	one	right
after	the	other!	But,	they’re	not	really	the	same	by	the	standard	of	an	atom-by-atom	comparison.	On	top	of	that,	when
you’re	repairing	machines	that	have	actually	been	doing	work,	even	machines	that	started	out	the	same	at	the	factory
will	have	diverged	over	time.

Slight,	but	meaningful,	differences	are	behind	the	similar-but-incompatible	phenomenon:

Model	year:	this	year’s	model	and	last	year’s	model	may	 look	the	same	on	the	outside,	but	manufacturers	often
make	internal	changes	that	may	be	difficult	to	see	(or	understand!).
Manufacturer’s	revisions:	apart	from	the	model	year,	manufacturers	will	frequently	decide	to	change—pretty	much
anything—and	still	keep	the	same	model	number.	Components	can	be	added	or	eliminated,	miniaturized,
rearranged,	etc.	The	manufacturer	may	do	this	because	they’ve	found	a	cheaper	way	to	make	the	product	or	to
eliminate	defects	found	in	earlier	production	runs.	On	top	of	that,	different	facilities	may	be	manufacturing	the
“same”	product,	but	doing	so	with	slight	variations.
Firmware/software	version:	for	any	system	that	has	digital	components,	there	will	be	software.	Those	crafty
programmers,	having	nothing	better	to	do,	can	churn	out	revision	after	revision—as	if	that’s	what	they	were	paid	to
do.	Depending	on	what	version	of	the	software	was	current	at	the	time	it	rolled	off	the	assembly	line,	or	what	was
current	at	the	time	it	was	last	serviced/updated,	you	can	have	multiple	“identical”	machines	each	running	slightly
different	code.
Usage:	over	time,	machines	will	begin	to	reflect	how	they	are	used.	Differences	in	workload,	accidents,	location	of
installation,	and	time	in	use	will	begin	to	impact	tolerances	between	components	and	leave	unique	wear	patterns.
Eventually,	these	differences	may	prevent	a	part	from	being	swapped	between	two	supposedly	identical	machines.
Maintenance	history:	regular	maintenance	(or	lack	thereof),	rebuilds,	use	of	different	brands	of	replacement	parts,
and	customizations	can	subtly	change	a	machine.	If	two	machines	are	not	maintained	exactly	the	same	way,	they
will	diverge	over	time.

Copy	One	That	Works	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 149

http://www.flickr.com/photos/hugo90/4310164209/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Nanotechnology

Note	that	some	of	these	differences	might	not	be	visible	to	the	naked	eye	(especially	minute	differences	in	tolerances
created	by	the	wear	and	tear	of	moving	parts).	Keeping	this	subtlety	in	mind	will	improve	your	chances	of	success
when	employing	the	“copy	one	that	works”	strategy.

Don’t	Just	Copy	Machines,	People	Can	Be	Modeled	Too

I’m	not	talking	about	strutting	your	stuff	on	the	catwalk.	We’ve	discussed	copying	a	working	machine,	but	don’t	stop
there.	If	you	know	someone	who’s	really	good	at	fixing	a	particular	type	of	system,	consider	imitating	them	as	well.
How	do	they	make	their	diagnoses?	Which	tools	do	they	use?	What	kind	of	training	have	they	received?	While
writing	The	Art	Of	Troubleshooting,	I	interviewed	many	great	troubleshooters	to	learn	their	methods.	You	can	do	the
same:	ask	if	you	can	observe	them	on	the	job,	or	offer	to	buy	them	lunch	and	pick	their	brains.	What	do	they	know	that
can	help	you	become	a	better	problem-solver?	Ask	and	you	shall	receive.

References:

Header	image:	Katie	Montgomery,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/j5dD6jNLhHk.

Copy	One	That	Works	was	originally	published	April	17,	2012.

Notes:

Copy	One	That	Works	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 150

https://unsplash.com/photos/j5dD6jNLhHk

Let’s	Be	Reasonable

Real	world	projects	are	not	logical	proofs.	So	you	can	use	these	techniques,	but	they	can	lead	you	astray.

Alex	Chaffee

Troubleshooting	requires	the	use	of	reason,	all	problem-solving	does.	As	reality	always	has	the	last	word,	make	sure
you’re	in	tune	with	what	it’s	saying.	So,	let’s	fire	up	your	left	brain	and	learn	about	the	principles	of	logic	relevant	to
troubleshooting,	while	trying	to	avoid	cutting	ourselves	with	Occam’s	Razor.

Induction

Induction	is	a	type	of	reasoning	that	makes	generalizations	from	specific	facts.	A	classic	example	from	the	ancient
philosophical	texts:

1.	 A	Pontiac	Trans	Am	is	wicked	cool.
2.	 A	Pontiac	Trans	Am	is	a	car.
3.	 Therefore,	all	cars	are	wicked	cool.

Let’s	Be	Reasonable	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 151

Based	on	this	fine	specimen,	can	we	make	the	leap	and	conclude	that	all	cars	are	awesome?	Welcome	to	the
problem	of	induction…

(image:	jackxface	/	CC	BY-ND	2.0)

Okay,	okay,	that	example	was	just	an	excuse	to	include	a	picture	of	a	sweet	‘Merican	muscle	car.	Also,	that	particular
leap	from	specific	to	general	is	ill-conceived.	Here’s	the	actual	example	from	antiquity:

1.	 Socrates	is	mortal.
2.	 Plato	is	mortal.
3.	 Aristotle	is	mortal.
4.	 Therefore,	all	men	are	mortal.

Induction	is	a	powerful	method	of	organizing	your	discoveries	about	the	world.	Going	from	the	specific	to	the	general
allows	us	to	know	things	that	would	otherwise	be	costly	to	discover	without	this	power	of	abstraction.	The	payoff
comes	later	when	you	take	what	was	learned	via	induction	and	make	judgements	about	specific	things	using
induction’s	opposite:	deduction.

Specific	And	General	Problems

Induction’s	associated	pitfalls	have	been	discussed	since	ancient	times	and	could	fill	a	library.	How	to	proceed	from	a
set	of	specifics	to	a	generalization	can	be	a	complicated	matter.	This	is	supposed	to	be	a	slim	volume	of	very	practical
knowledge,	so	if	you’re	viscerally	excited	by	the	“Problem	of	Induction,”	you’ll	have	to	go	and	study	the	topic	on	your
own	(preferably	in	a	black	beret	and	turtleneck	in	a	coffee	shop	somewhere).	However,	I	do	want	to	acquaint	you	with
some	common	induction	problems	that	are	frequently	encountered	by	troubleshooters.

Sample	size:	going	from	specific	to	general	based	on	a	single	example	or	without	knowledge	of	the	entire	universe	of
possibilities	can	lead	to	generalizations	that	aren’t	true.	You	can	see	the	problem	in	the	two	examples	above:	we’ve	yet
to	encounter	a	man	that	isn’t	mortal.	However,	looking	at	one	Trans	Am	and	leaping	to	the	conclusion	that	all	cars	are
cool	is	easily	falsifiable.	Good	sir	or	madam,	have	you	never	laid	eyes	on	a	Geo	Metro?!

Induction	is	a	chain:	your	conclusion	is	only	as	good	as	your	initial	premises.	“Garbage	in,	garbage	out”	nicely

expresses	this	potential	problem	with	induction.	If	we	had	misjudged	the	true	nature	of	Socrates,	and	he	really	was

immortal,	then	our	subsequent	reasoning	is	really	going	to	be	screwed	up!	Put	another	way,	if	your	initial	specific

observation	isn’t	right,	errors	will	be	amplified	when	you	make	a	generalization	based	upon	it.

Loose	conceptual	connections:	the	conclusion	that	man	is	mortal	flows	easily	from	man’s	nature,	perhaps	even	from

Let’s	Be	Reasonable	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 152

http://www.flickr.com/photos/38655018@N04/4161456745/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://en.wikipedia.org/wiki/Geo_Metro

the	very	definition	of	man	as	a	rational	animal	whose	biology	as	a	living	organism	necessitates	the	possibility	of	death.
In	contrast,	“all	cars	are	wicked	cool,”	seems	like	a	conclusion	with	a	looser	connection	to	the	concept	of	a	car.	Cars
were	designed	for	the	purpose	transportation	and	their	essential	characteristics	include	things	like	doors,	wheels,	and
engines.	“Coolness”	seems	further	afield.	Of	course,	a	generalization	about	all	cars	being	cool	could	be	true,	but	its
disconnectedness	should	be	a	red	flag	for	further	investigation.

Deduction

Deduction	reverses	the	direction,	going	from	the	general	to	the	specific.	Back	to	our	friend	 Socrates	for	an	example:

1.	 All	men	are	mortal.
2.	 Socrates	is	a	man.
3.	 Therefore,	Socrates	is	mortal.

Deduction	is	a	very	useful	time-saving	shortcut:	if	you	know	something	is	true	in	general,	it	must	also	be	true	on	the
smaller	scale	of	a	specific	example.	If	“all	men	are	mortal,”	you	don’t	have	to	ask	a	gunshot	victim	if	they	need	help.	If
they’re	human,	they	are	vulnerable	to	death,	so	of	course	they	do!

Deduction	is	a	powerful	tool,	but	it	too	has	its	pitfalls.	One	problem	involves	improper	classification:	if	you	perceive
something	to	be	a	member	of	a	broader	class	when	it’s	really	not,	you	will	be	making	a	big	error	when	you	apply	your
generalizations.	For	example,	if	you	happen	to	be	a	comic	book	villain	and	you	mistake	Superman	for	a	“man”	(one
like	you	and	me),	you	may	find	yourself	really	confused	when	he	won’t	die.

Also,	any	errors	you	made	during	the	induction	phase	will	come	back	to	haunt	your	deductions.	If	you	made	a
generalization	that	simply	wasn’t	true	(perhaps	because	you	hadn’t	discovered	all	the	different	possible	cases)	that
mistake	will	carry	through	when	you	apply	it	to	a	specific	case.

Induction	And	Deduction	In	Action	While	Troubleshooting

Now,	let’s	make	the	connection	with	troubleshooting.	Understanding	and	applying	both	induction	and	deduction
properly	is	important	because	these	logical	principles	show	up	all	the	time	when	you’re	on	the	hunt	for	a	solution	to	a
breakdown.

When	using	deduction,	your	prior	experience	with	a	machine	will	act	like	a	generalization.	“All	men	are	mortal”	is
analogous	to	“when	my	car	fails	to	start	the	cause	is	a	dead	battery.”	However,	you	can	probably	spot	the	difference
between	philosophical	truths	and	those	encountered	while	troubleshooting:	those	turtlenecked	deep	thinkers	sitting	in
coffee	shops	may	make	conclusions	based	on	generalizations	that	are	universally	true	for	all	time	and	for	all	cases.	By
contrast,	the	matching	of	symptoms	with	failures	while	troubleshooting	will	often	be	statistically	true	(e.g.,	“83%	of	the
time,	this	type	of	problem	is	caused	by	X…”).	Most	systems	can	fail	in	a	mind-boggling	number	of	ways,	so	there’s	no
guarantee	that	the	cause	of	a	particular	failure	will	be	the	same	as	last	time,	even	if	the	symptoms	are	exactly	the	same
(see	“Same	Symptom,	Different	Causes”).	Your	experience	can	be	a	very	powerful	time-saver,	quickly	pointing	the	way
to	a	solution.	However,	be	aware	of	the	problem	of	deduction	and	think	before	applying	the	generalizations	of	your
experience	to	all	scenarios.	Troubleshooting	is	so	often	about	the	exceptions!

Speaking	of	exceptions,	when	you	find	counterexamples	to	your	troubleshooting	generalizations,	you	need	to
incorporate	them	to	make	your	conclusions	tighter.	Take	a	generalization,	formed	from	your	experience,	like	“when
my	car	fails	to	start	the	cause	is	a	dead	battery.”	One	day,	you	will	inevitably	find	yourself	hooking	up	jumper	cables	to
your	car,	only	to	have	it	not	start!	That	is,	the	car	won’t	start,	but	something	other	than	a	dead	battery	will	be	the	cause.
This	is	exciting,	because	you	are	on	the	verge	of	discovering	a	new	cause	of	your	problem.	Perhaps	this	time	you
discover	the	car	is	out	of	gas.	Now,	your	original	generalization	can	be	narrowed	to:	“If	the	car	is	otherwise	functional
and	there	is	gas	in	the	tank,	a	dead	battery	will	prevent	it	from	starting.”	When	there’s	more	than	a	few	exceptions,
stating	them	like	this	can	become	unwieldy,	so	this	type	of	information	is	better	presented	in	a	troubleshooting	tree.

Induction	will	come	into	play	during	the	“Cleaning	Up”	phase,	where	you	try	to	learn	from	and	prevent	a	particular
breakdown	from	happening	again.	You’ll	have	some	specific	facts,	the	circumstances	surrounding	a	failure,	from
which	you	will	attempt	to	form	generalizations.	Those	generalizations	may	be	procedures	for	how	to	conduct	future
repairs	(e.g.,	“Next	time,	we	should	attack	the	problem	like	this…”)	or	recommendations	for	routine	maintenance	(e.g.,
“We	should	replace	this	part	every	month…”).	The	challenge	is	making	these	leaps	with	incomplete	information,

Let’s	Be	Reasonable	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 153

http://plato.stanford.edu/entries/socrates/
https://artoftroubleshooting.com/2012/03/13/same-symptom-different-causes/
https://artoftroubleshooting.com/2013/02/26/troubleshooting-trees/
https://artoftroubleshooting.com/cleaning-up/

keeping	in	mind	that	sometimes	you	may	not	have	enough	data	to	make	a	recommendation	with	certainty.	As	I’ve	said
before,	you	should	always	make	the	best	guess	you	can	with	the	information	you	do	have	and	then	correct	your	course
as	you	go	along	by	collecting	and	analyzing	data.

Hypothesis	Testing

When	troubleshooting,	you	should	look	for	opportunities	to	create	testable	hypotheses	regarding	the	failure	of	a
system.	Remember	the	generic	problem-solving	formula	I	introduced	in	“One-size-doesn’t-fit-all”:

Step	1.	Defining	the	problem
Step	2.	Gathering	facts
Step	3.	Analyzing	information
Step	4.	Eliminating	possibilities
Step	5.	Proposing	a	hypothesis
Step	6.	Testing	the	hypothesis
Step	7.	Solving	the	problem

Amir	Ranjbar,	Troubleshooting	and	Maintaining	Cisco	IP	Networks	1

Steps	5-6	form	a	loop	that	can	be	iterated	over	and	over	until	a	solution	is	found.	Form	a	hypothesis,	test	it	and,	if	the
problem	persists,	incorporate	what	you’ve	learned	into	a	new	one.	Wash,	rinse,	repeat.

Asserting	something	about	the	cause	of	the	failure	(and	when	I	say	“something,”	I	mean	 anything),	can	be	a	good	way
to	start	theorizing.	Psychologically,	I	think	this	is	because	it’s	often	useful	to	have	something	to	resist	against.	To
facilitate	the	formation	of	hypotheses,	I	suggest	making	statements	of	the	form:	“If	X	is	being	caused	by	Y,	then	Z	must
be	true.”	Say	it	out	loud.

Examples:

“If	the	car	won’t	start	because	the	battery	is	dead,	then	replacing	the	battery	will	allow	the	car	to	start.”

This	is	a	very	clear	hypothesis	statement	that	includes	two	avenues	for	action:	1)	testing	the	battery	to	see	if	it’s	dead
and,	if	so,	2)	replacing	it	to	see	if	the	car	will	start.

“If	the	low	pressure	readings	are	being	caused	by	a	faulty	pressure	gauge,	then	replacing	the	gauge	with	one	that	is
known	to	work	will	restore	normal	readings.”

Again,	a	good	hypothesis	makes	the	course	of	action	to	be	taken	obvious.

Everything	Has	To	Fit

The	goal	is	to	find	a	hypothesis	that	integrates	all	of	the	known	facts;	the	goal	of	testing	the	hypothesis	is	to	expose
unknown	facts	that	you	haven’t	accounted	for.	As	shown	in	my	ode	to	data	collection,	there	are	an	infinite	number	of
things	that	can	be	observed	and	recorded	for	any	given	machine.	So,	you’ll	never	get	to	know	everything	about	a
particular	problem.	For	the	purposes	of	troubleshooting,	all	you	really	care	about	are	the	subset	of	the	facts	that	are
preventing	the	machine	from	working.	The	hypothesis	testing	loop	above	is	a	great	way	to	discover	these	relevant
items.

Keep	It	Simple

A	bias	towards	simplicity	should	drive	your	evaluation	of	competing	hypotheses.	You	may	have	heard	of	Occam’s
Razor:

[Occam’s	Razor]	implies	that—other	things	being	equal—it	is	rational	to	prefer	theories	which	commit	us	to
smaller	ontologies.

Let’s	Be	Reasonable	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 154

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
https://artoftroubleshooting.com/2013/03/30/one-size-doesnt-fit-all/
https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/

The	Stanford	Encyclopedia	of	Philosophy 	2

“Smaller	ontologies”	means	theories	with	fewer	entities,	a	parsimony	of	thought.	Occam’s	Razor	is	sometimes
misunderstood	to	mean	that	you	should	always	favor	simpler	explanations	over	more	complicated	ones.	Simple	or
complex,	the	hypothesis	must	always	fit	the	data.	If	you’re	trading	simplicity	for	an	equal	amount	of	explanatory
power,	Occam’s	Razor	doesn’t	say	that	one	hypothesis	is	necessarily	better	than	the	other.

While	troubleshooting,	it’s	easy	to	get	carried	away	with	complicated	explanations	for	a	failure.	Are	you	beginning	to
entertain	theories	involving	Leprechauns	and	Unicorns,	prancing	around	on	epicycles?	That’s	your	wake	up	call	that
you	might	be	on	the	wrong	track.	Most	likely,	you’ve	subconsciously	blocked	off	an	entire	realm	of	possibilities	or
haven’t	followed	the	evidence	to	its	logical	conclusion.

References:

Header	image:	Fleur,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/QreQvdSr-Wc.
1	Amir	Ranjbar,	Troubleshooting	and	Maintaining	Cisco	IP	Networks	(Indianapolis:	Cisco	Press,	2010),	pg.	41.
2	Simplicity,	The	Stanford	Encyclopedia	of	Philosophy.
Ben	Bayer.	Introductory	Practical	Logic.

Let’s	Be	Reasonable	was	originally	published	September	1,	2012.

Notes:

Let’s	Be	Reasonable	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 155

http://www.physicstoday.org/resource/1/phtoad/v64/i9/p50_s1?bypassSSO=1
https://unsplash.com/photos/QreQvdSr-Wc
http://plato.stanford.edu/entries/simplicity/
http://www.benbayer.com/logicbook.html

Know	Your	Limits

I	loved	carburetors.	I’d	make	$90	to	clean	a	4-barrel	carburetor,	using	a	kit	that	cost	$37.	I	had	a	guy	come	in	and
I	quoted	him	$90.	He	said,	“That’s	too	damn	high,	I’ll	get	the	kit	and	do	it	myself.”	I	said,	“Okay,	go	ahead	and	do
it	yourself.”

He	came	back	later	with	a	pail	full	of	parts	and	said,	“Can	you	put	this	back	together?”	I	said,	“Yeah,	it’ll	be	$90.”
He	said,	“$90!”	I	said,	“Did	you	get	the	instructions?	They	should	have	come	with	the	kit.”	You	have	to	smile
while	you’re	saying	this,	of	course.

Twenty	minutes	later	I	had	it	back	together.	He	said,	“Wow,	that’s	fast	money.”	I	said,	“You	can	do	the	same
thing,	just	learn	what	I’ve	learned	and	start	up	your	own	business.”

Gerald	Quade

This	one	is	for	the	amateurs.	And,	we’re	all	amateurs.	Even	if	you’re	a	professional	that’s	paid	to	fix	things,	you’re
surely	a	novice	in	some	context.	The	auto	mechanic	might	not	be	good	at	fixing	computers.	A	nuclear	engineer	won’t

Know	Your	Limits	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 156

necessarily	be	up	on	the	latest-and-greatest	in	the	world	of	riding	lawn	mowers.	Even	when	operating	in	their	area	of
expertise,	good	troubleshooters	know	when	they’re	in	over	their	heads.	When	this	happens,	they	know	to	call	for	help!

The	decision	to	troubleshoot	is	a	combination	of	several	interrelated	factors:

Motivation:	the	pressure	or	driving	force	behind	getting	something	fixed.	If	it’s	part	of	your	job,	you	may	not	have	a
choice	in	this	regard.
Resources:	time,	money,	people	and	tools	available	to	help	you	troubleshoot.
Expertise:	the	ability	to	find	the	problem	and	make	a	particular	repair.	Even	though	you	could	learn	how	to	fix
something,	the	time	and	effort	required	might	be	prohibitive.
Risks/safety	issues:	knowing	what’s	at	stake.	Is	the	company’s	fortunes	riding	on	making	a	repair?	Could	someone
die	or	get	injured	in	the	process?

The	context	in	which	you	troubleshoot	affects	these	factors	greatly.	Hobby-related	troubleshooting	projects	typically
have	no	deadlines:	I’ve	seen	classic	car	and	motorcycle	restorations	that	have	taken	years	to	complete!	In	contrast,	if
you’re	a	technician	working	for	a	telecom	company,	chances	are	your	clients	expect	problems	to	be	fixed	today.	Any
of	the	above	considerations	can	also	be	the	deciding	factor	to	not	troubleshoot.	These	same	factors	(motivation,
resources,	expertise,	risks/safety)	also	come	into	play	when	deciding	whether	to	call	in	a	professional	to	help	you	fix
something.	Let’s	weigh	the	pros	and	cons	for	getting	involved	with	an	outside	professional	in	each	of	these	categories:

Motivation:

Pros:	If	it	must	be	fixed	(and	you	can’t	do	it),	then	getting	outside	help	might	be	the	only	way.
Cons:	In	a	low-stakes	situation,	what’s	the	rush?	In	these	cases,	I	like	to	see	how	far	I	can	push	myself—these
relaxed	scenarios	are	great	for	improving	your	troubleshooting	skills.	If	you	hit	a	wall	you	can	always	call	for
backup,	so	consider	giving	it	a	try	by	yourself	first.

Resources:

Pros:	In	the	right	context,	hiring	a	professional	can	actually	 save	resources.	If	the	rest	of	your	staff	is	busy	with	more
important	things,	hiring	a	professional	troubleshooter	will	allow	them	to	continue	uninterrupted.	Sometimes	a
breakdown	will	hold	up	production,	idling	expensive	materials,	machines,	and	manpower.	In	these	situations,	a
professional’s	ability	to	reach	a	resolution	faster	can	be	worth	many	times	their	fees.	Finally,	hired	guns	often	have
access	to	expensive	and	specialized	tools	that	you’d	rather	not	buy	just	to	make	a	single	repair.
Cons:	Hiring	and	managing	a	professional	consumes	its	own	resources.	First	off,	there’s	the	professional’s	fee,	but
this	isn’t	the	only	cost.	You	must	first	search	for	the	right	person	or	firm,	selecting	them	among	the	various
candidates	(perhaps	by	checking	references	and	vetting	their	previous	work).	Also,	time	is	required	to	present	the
problem	to	them	in	a	way	they	can	understand	and	bring	them	up	to	speed	about	your	infrastructure.	You	must
coordinate	schedules,	deliver	the	broken	system	to	them	or	make	an	appointment	for	them	to	come	on	site.	Finally,
when	they	say	it’s	fixed,	will	you	need	to	double-check	their	work?

Expertise:

Pros:	When	you	lack	the	ability	to	find	the	problem	or	make	a	particular	repair,	the	need	for	a	professional
becomes	obvious.	Constraints	may	not	allow	you	to	learn	what’s	necessary	in	the	timeframe	required;	delegation
may	not	be	possible	because	of	a	lack	of	staff.
Cons:	The	time	you	spend	learning	how	to	fix	something	yourself	can	pay	dividends	later.	If	a	particular	type	of
failure	happens	often	enough,	you’ll	probably	want	to	know	how	to	repair	it	on	your	own.

Risks/Safety:

Pros:	A	competent	professional	will	be	more	aware	of	the	hazards	associated	with	attempting	a	given	repair.	If	they
are	concerned	with	their	reputation,	they	will	typically	advocate	the	safest	path	that	guarantees	results.	Also,
you	might	make	the	situation	worse	by	botching	a	fix.	I	definitely	have.
Cons:	There’s	always	the	chance	of	hiring	someone	who’s	dishonest	or	incompetent	(or,	if	you’re	really	cursed,
both!).	Dealing	with	the	fallout	of	hiring	a	bad	contractor	can	be	very	time	consuming.	Letting	someone	into	your
facilities	risks	theft	and	exposure	of	trade	secrets.	Also,	if	the	repair	is	critical	to	your	business,	can	you	trust
handing	it	over	to	someone	else?

Know	Your	Limits	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 157

Losing	the	fight?	Time	to	call	in	the	cavalry.
(image:	Édouard	Detaille	/	Wikimedia	Commons)

Let	The	Circumstances	Decide

One	of	my	goals	in	writing	The	Art	Of	Troubleshooting	is	to	lower	the	perceived	barriers	to	troubleshooting	through
education.	Even	though	the	world	of	machines	continues	to	increase	in	complexity,	there’s	still	so	much	you	can	do	for
yourself.	Knowing	the	basics	and	having	a	language	to	speak	about	troubleshooting,	you	can	go	very	far.	That	being
said,	I	have	no	bias	towards	doing	it	yourself	or	hiring	someone	to	help.	Expanding	your	fix-it	skills	can	be	very
gratifying,	but	ultimately	the	troubleshooting	process	must	be	guided	by	the	factors	listed	above.	Go	with	what	the
situation	favors.

Second	Opinions

I’ve	had	many	ridiculous,	super-sized	estimates	for	repair	work	cross	my	desk	over	the	years.	You	may	“get	what	you
pay	for,”	but	that	doesn’t	mean	you	have	to	gold-plate	somebody’s	yacht.	A	professional	may	know	more	than	you,	but
they	are	not	infallible.	Don’t	be	afraid	to	ask	questions	and	seek	clarification.	After	all,	they	work	for	you!	For	really
expensive	or	important	repair	decisions,	take	a	note	from	medicine	and	consider	a	second	opinion.	Or	even	a	third:
the	conventional	wisdom	in	business	is	to	always	get	3	estimates	when	considering	a	large	purchase.	This	approach
has	saved	me	thousands	in	repair	bills	over	the	years!

References:

Header	image:	Harris	&	Ewing,	photographer.	Repairing	government	trucks	at	the	Treasury	procurement	section.
United	States,	Washington	D.C.,	ca.	1937.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2016872242/.

Know	Your	Limits	was	originally	published	February	22,	2013.

Know	Your	Limits	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 158

https://commons.wikimedia.org/wiki/File:Edouard_Detaille_-_Vive_L%2527Empereur_-_Google_Art_Project.jpg
https://www.loc.gov/item/2016872242/

Notes:

Know	Your	Limits	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 159

Where	Do	I	Begin?

Check	the	stupid	stuff.	Before	you	tear	apart	the	alternator,	see	if	the	belt	is	tight.

Jeremy	Sheetz

Every	troubleshooting	project	requires	an	entry	point.	How	do	you	find	a	good	place	to	start?	 Choosing	poorly	can
mean	the	difference	between	fruitful	problem-solving	and	a	trip	down	the	proverbial	rabbit	hole.	It	seems	like	it	should
be	straightforward,	but	it’s	often	not.	What’s	usually	obvious	is	the	symptom,	but	of	course	that’s	different	than	the
cause.	If	you’re	new	to	a	machine,	knowing	where	to	begin	will	be	an	intuitive	process	involving	trial	and	error.	Before
you’ve	achieved	expertise	with	a	system,	consider	these	promising	possibilities	for	starting	points:

Start	By	Duplicating	The	Problem

Always	a	great	place	to	start,	because	replicating	the	problem	allows	you	to	start	a	loop	where	you:

1.	 Try	something
2.	 Test	to	see	if	the	failure	is	still	present

Unfortunately,	there	are	times	where	attempting	to	duplicate	a	problem	isn’t	a	very	useful	beginning,	like	when:

Where	Do	I	Begin?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 160

http://www.youtube.com/watch?v=Ubw5N8iVDHI
https://artoftroubleshooting.com/2011/12/13/duplicate-the-problem/

The	machine	has	not	recently	been	operational	and	there	are	likely	to	be	multiple	failures.	The	duplicability	of
these	situations	will	be	100%,	but	that	fact	won’t	necessarily	aid	problem	discovery.
The	problem	is	intermittent.

If	only	where	to	start	was	always	this	obvious…
(image:	Michel	Filion	/	CC	BY-ND	2.0)

Start	With	An	Inspection

Giving	a	failed	system	a	once-over	is	a	great	way	to	initiate	the	problem	discovery	phase.	A	basic	inspection	may
uncover	obvious	signs	like	smoke,	weird	smells,	or	noises.	These	attention-grabbing	symptoms	may	highlight	the
problem	area,	but	remember	not	to	confuse	them	with	the	actual	cause	of	the	problem.	Even	so,	it’s	a	gift	when	the
starting	point	is	so	obviously	presented	to	you.

A	basic	inspection	may	also	turn	up	less	glaring,	yet	still	promising	leads.	I’m	talking	about	cracks,	dirty	contacts,
frayed	wires,	or	bent	parts.	You	might	notice	a	disconnected	hose,	a	wire	about	to	come	off	a	post,	or	a	loose	screw.
Machines	are	supposed	to	be	orderly	inside,	so	even	if	you	aren’t	an	expert	in	how	a	system	is	supposed	to	work,	you
can	still	spot	things	that	are	amiss.	You	will	hear	yourself	saying:	“This	doesn’t	look	right.”	When	searching	for	things
out	of	place,	include	fluids	not	where	they	should	be	(aka,	leaks).

Digital	devices	have	an	extra	layer,	beyond	the	physical,	that	requires	inspecting.	Of	course,	they	also	have	problems
that	manifest	themselves	physically:	I’ve	smelled	all	kinds	of	wonderful	things	emanating	from	computers	over	the
years	(like	burning	power	supplies).	However,	there	are	a	whole	host	of	problems	that	can	lie	hidden	among	the	bits,
unobservable	to	the	naked	eye.	For	this	dimension,	viewing	the	console,	running	diagnostic	programs,	and	examining
logs	are	the	digital	equivalent	of	the	walk-around.

Start	With	Routine	Maintenance

Any	time	you	discover	a	lapse	in	routine	maintenance,	you’ve	also	found	a	great	starting	point.	You	know	that
maintenance	regimes	are	designed	to	prevent	the	most	common	problems,	so	it	makes	sense	that	simply	doing	the
recommended	upkeep	can	bring	a	system	back	to	life.

Part	of	routine	maintenance	is	keeping	current	with	the	latest-and-greatest	from	the	manufacturer	and	end	user
community.	This	means	awareness	of	recalls,	applying	firmware	or	software	upgrades,	and	adhering	to	any	new	“best

Where	Do	I	Begin?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 161

https://artoftroubleshooting.com/2013/02/14/failing-to-fail-duplicate-the-problem-part-2/
file:///Users/jasonmaxham/Library/CloudStorage/Dropbox/JGM/Art%20of%20Troubleshooting/book/v3/img/2e1a9adc9a86e05d3769adf3c743759d3e12b1b5a63e8b0222bf8e7dbf4ae7dc
http://www.flickr.com/photos/mike9alive/3630395512/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
https://artoftroubleshooting.com/2013/05/17/how-is-it-supposed-to-work/

practices”	on	how	to	effectively	use	a	machine.	Especially	when	a	problem	is	known	and	a	fix	readily	available	(as
with	a	recall	or	a	software	update),	this	aspect	of	maintenance	is	a	great	place	to	start	a	new	troubleshooting	project.

Excerpt:	manufacturer	troubleshooting	guides	like	this	will	save	you	a	lot	of	time	and	are	a	great	place	to
start.

(source:	Rain	Bird	RC	Troubleshooting	Guide)

Start	With	The	Manual	Or	Technical	Support	Documents

Many	manufacturers	kindly	list	the	most	common	problems	and	solutions	for	a	particular	product	in	their	manuals	or
support	guides.	Yes,	you	should	take	the	time	to	familiarize	yourself	with	this	information.	Why	reinvent	the	wheel?

You	might	usually	throw	this	kind	of	material	away.	That’s	okay,	because	most	manufacturers	publish	their	product
manuals	online	for	easy	access.	If	the	machine	in	question	is	expensive	and/or	mass-produced,	there	may	be	significant
third-party	resources	available	to	help	you	troubleshoot,	perhaps	with	step-by-step	instructions	for	solving	even	the
smallest	of	problems.	Automobiles,	for	example,	have	a	large	professional	troubleshooting	industry	that	spans	the
spectrum	from	do-it-yourself	(manuals,	parts	stores,	etc.)	to	full-service	“don’t	make	me	lift	a	wrench”	solutions	(repair
shops).

Manufacturer	materials	are	usually	a	big	win	because	of	the	deep	experience	they	have	with	their	products.	From
design,	to	testing,	to	manufacturing,	to	reports	from	customer	service,	they	are	in	a	unique	position	to	give	good
advice.	For	you,	the	amount	of	time	and	expertise	needed	to	independently	discover	the	knowledge	encapsulated	in
even	one	line	of	a	troubleshooting	guide	might	be	significant.	The	general	principles	in	The	Art	Of	Troubleshooting	will
help	you	to	address	any	problem,	but	there	really	is	no	substitute	for	having	the	solution	to	your	exact	problem	laid	out
in	black	and	white.	Don’t	worry,	there	will	be	plenty	of	“undocumented”	problems	for	you	to	solve.	For	the	rest,	feel
free	to	take	the	easy	route!	Again,	if	the	solution	was	there	all	along,	you’re	going	to	kick	yourself	later	if	you	wasted
your	valuable	time	trying	to	be	a	hero.

Even	if	there	isn’t	a	troubleshooting	guide	for	your	particular	problem,	contacting	the	manufacturer	might	still	be
fruitful:	they	may	not	be	able	to	offer	a	solution,	but	someone	in	the	service	department	should	be	able	to	steer	you	in
the	right	direction.

Start	By	Realizing	That	You	Are	Not	A	Beautiful	Or	Unique	Snowflake

Where	Do	I	Begin?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 162

http://www.rainbird.com/documents/turf/man_RCTroubleshootingGuide.pdf
https://www.youtube.com/watch?v=EP5aqAC8PPY

At	least	not	when	it	comes	to	troubleshooting.	When	fixing	mass-produced	items	like	consumer	electronics	or	cars,
take	comfort	in	the	fact	that	you’re	not	alone.	There’s	a	good	chance	that	someone	has	encountered	your	problem
before	and	there	is	a	fix	or	a	workaround	just	waiting	to	be	uncovered,	should	you	bother	to	lift	your	fingers	and	type
the	magic	words	into	a	search	engine	(or	your	company’s	issue	tracking	database).

I’ve	been	totally	astonished	by	breakdowns	I	would	have	thought	to	be	completely	unique.	We’re	talking	about	some
really	obscure	and	exotic	failures.	However,	after	searching	online	forums,	I	discover:

1.	 Hundreds	or	even	thousands	of	others	have	encountered	my	same	problem.
2.	 A	fix	or	workaround	that	is	fully	tested,	documented,	and	ready	to	implement	(sometimes	years	old!).

Welcome	to	living	on	a	planet	with	7+	billion	people.	Sorry,	but	you’ll	need	to	find	some	other	way	to	make	yourself
feel	unique	beside	having	the	most	interesting	malfunction	(may	I	suggest	a	vintage	hat	worn	at	a	jaunty	angle	or
perhaps	a	t-shirt	with	a	clever	slogan?).	The	upside	is	that	you	can	leverage	the	collective	experience	of	the	masses.
Save	your	sweat	for	the	situations	that	actually	require	“going	it	alone.”	Being	a	smart	troubleshooter	means	tapping
into	the	social	network.	It	doesn’t	matter	to	me	if	you	solve	the	problem	by	Googling	or	through	a	Herculean	triumph
of	reasoning.

Either	way,	you	can	take	the	credit.	After	finding	a	solution	off	the	Internet	(which	sounds	boring),	I	occasionally	add	a
little	drama	by	telling	people	that	the	answer	came	to	me	in	a	dream:	a	soaring	Bald	Eagle	represented	the	engine	and
a	man	wearing	a	loin	cloth	made	of	bacon	represented	the	bad	spark	plug…

Start	Where	The	Graphs	Get	Funky

If	you	have	solid	operational	data	and	can	answer	the	question	“What	is	normal?,”	then	a	good	place	to	start
troubleshooting	is	with	your	graphs.	Look	for:

1.	 Parameters	outside	their	normal	range
2.	 Variability/volatility
3.	 Increasing/decreasing	periodicity	(i.e.,	cycles	taking	longer	or	shorter	than	normal)
4.	 Upward	or	declining	trends

Cross-comparing	and	overlaying	data	can	be	a	powerful	way	to	start	theorizing	about	the	cause	of	a	problem.	Let	your
data	point	the	way!

Start	With	Recent	Changes

Recent	changes	to	a	machine	or	its	environment	are	great	starting	points	for	an	investigation,	as	explained	in	 “What’s
Changed?”

Start	With	The	People	On	The	Front	Lines

Have	you	talked	to	the	people	on	the	front	lines	who	might	know	the	answer?	I	discovered	this,	quite	accidentally,
after	doing	some	solo	analyses	of	downtime	incidents.	I	would	diligently	collect	and	analyze	data	on	my	own	and	be
kept	up	late	at	night	pondering	the	causes	of	these	problems.

Frequently,	after	I	had	found	a	solution	and	written	a	report	about	it	(perhaps	months	later),	I	would	be	casually
chatting	with	one	my	engineers	and	the	topic	of	one	of	these	incidents	would	come	up.	In	the	middle	of	telling	my
triumphant	troubleshooting	story,	they	would	usually	stop	me	and	say	something	like:	“Oh	yeah,	I’ve	seen	that	before:	I
bet	it	was…”

Cut	to	a	deflated	look	on	my	face.	What	had	taken	me	days	of	painstaking	investigative	work	to	identify,	they	already
knew,	and	were	carrying	around	in	their	heads.	Ugh!	I	would	cry	out	“Why	didn’t	you	say	something?!”	Frequently,
their	answer	was:	“No	one	asked	me.”

After	this	happened	a	few	times,	I	began	to	cast	a	very	wide	net	when	troubleshooting.	The	things	I	 didn’t	know	(but
were	known	by	others)	frequently	surprised	me,	and	I	had	been	with	the	company	from	day	one!

I	don’t	think	I	was	oblivious,	but	I	sure	wasn’t	getting	our	problems	in	front	of	the	right	people.	The	takeaway	is:	are

Where	Do	I	Begin?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 163

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
https://artoftroubleshooting.com/2013/03/05/whats-changed/

you	ignoring	those	who	might	know	the	answer	or	can	quickly	orient	you?	People	on	the	front	lines:	operators,
maintenance	personnel,	programmers,	systems	administrators,	etc.	will	have	relevant	firsthand	experiences	and	useful
knowledge.	Ask	them!

Begin	With	This	Most	Excellent	List	Of	Questions

My	free	1-page	Universal	Troubleshooting	Guide	distills	the	strategies	described	in	The	Art	Of	Troubleshooting	down
to	a	powerful	list	of	questions	that	you	can	ask	yourself	while	actually	problem-solving.	It’s	the	best	way	to	start	any
troubleshooting	exercise!

References:

Header	image:	Bain	News	Service,	P.	Starting	Aeroplane	Motor.	ca.	1915-1920.	[Photograph]	Retrieved	from	the
Library	of	Congress,	https://www.loc.gov/item/2014708511/.

Where	Do	I	Begin?	was	originally	published	March	1,	2013.

Notes:

Where	Do	I	Begin?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 164

https://artoftroubleshooting.com/the-right-questions-a-universal-troubleshooting-guide/
https://artoftroubleshooting.com/the-right-questions-a-universal-troubleshooting-guide/
https://artoftroubleshooting.com/strategies/
https://www.loc.gov/item/2014708511/

What’s	Changed?

I	look	for	anything	out	of	place.	Is	there	something	burned?	Is	there	something	that	looks	melted?	Is	it	shiny	when
everything	else	is	dull?	Is	there	something	glowing	cherry	red?	It’s	that	saying	from	Sesame	Street:	“One	of	these
things	is	not	like	the	others.”

Mike	McCormick

The	buildup	to	a	machine	failure	can	involve	normal	wear	and	tear,	neglected	maintenance,	misuse,	abuse,	and	Acts
of	God.	Add	one	more	to	this	list:	the	unintended	consequences	flowing	from	changes	to	how	a	machine	is	used,
configured,	or	to	its	environment.

Lao	Tzu	says:

What	is	recent	is	easy	to	correct.	1

The	Troubleshooter	says:

What	is	recently	changed	is	likely	to	have	caused	the	problem.

What’s	Changed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 165

Making	modifications	to	a	system	or	its	environment	can	be	the	unintentional	catalyst	for	a	meltdown.	Perhaps	an
increased	workload	pushes	a	machine	to	its	breaking	point.	Maybe	a	recent	software	upgrade	contains	a	bug	that
disables	a	critical	feature.	Perchance	a	machine	gets	too	hot	when	someone	accidentally	turns	off	the	air	conditioning.
Experience	says	that	looking	for	what’s	recently	changed	is	a	great	starting	point	for	any	troubleshooting	exercise.	Look
for	these	type	of	situations:

Notice	anything	different?
(image:	Honoré	Daumier	/	Wikimedia	Commons)

The	Floodgates	Have	Been	Opened	(Or	Closed)

Change	type:	Workload

If	a	machine	does	the	same	job,	day	in	and	day	out,	its	behavior	will	be	fairly	predictable.	However,	when	you
significantly	change	a	system’s	workload,	it	can	be	the	setup	for	a	breakdown.	Even	though	a	machine	may	be
designed	for	the	additional	burden,	an	increased	workload	often	exposes	wear	and	tear	and	foregone	maintenance.	It’s
a	chipper	that’s	been	used	to	mince	light	brush,	but	then	is	fed	a	small	tree	and	has	a	meltdown.	It’s	an	aging	SUV	that
has	never	left	the	pavement,	then	cracks	an	axle	on	its	first	off-road	adventure.

I	can	think	of	numerous	examples	from	my	own	life	where	increased	usage	has	tipped	a	machine	over	the	edge.	I	had
a	paper	shredder	that	was	just	fine	with	a	single	sheet	of	paper	at	a	time,	but	died	a	sudden	death	when	I	tried	to	do	5
at	a	time.	I	owned	an	old	car	that	was	fine	for	driving	around	town,	but	wasn’t	up	for	a	long	road	trip.	And	on	and	on.

Surprisingly,	decreasing	a	system’s	workload	can	also	have	negative	consequences.	When	storing	a	car	long-term,	it’s
recommended	that	you	start	the	car	occasionally	to	charge	the	battery	and	keep	key	components	lubricated.	You	may
never	have	considered	it,	but	using	a	car	is	part	of	its	maintenance,	just	like	an	oil	change!	Our	bodies	are	the	same
way,	a	minimum	amount	of	activity	is	required	to	keep	them	functioning.	Astronauts	living	in	a	weightless	environment
have	to	battle	severe	atrophy	of	their	muscles	because	of	their	lessened	usage.	Waterless	urinals	are	another	great
example	of	the	unintended	consequences	of	decreased	throughput:	the	high	concentration	of	acids,	normally	diluted
by	water	when	flushing	a	traditional	urinal,	will	eventually	corrode	copper	pipes.

Finally,	the	work	done	by	a	machine	doesn’t	have	to	be	any	different	than	before,	because	simply	more	of	it	can	cause

What’s	Changed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 166

https://commons.wikimedia.org/wiki/File:1830_et_1833_LACMA_M.73.81.jpg
http://www.edmunds.com/car-care/how-to-prep-your-car-for-long-term-storage.html
http://www.dailymail.co.uk/sciencetech/article-1304053/Space-flight-cause-astronauts-muscle-tissue-waste-away-nearly-half.html
http://www.nbcchicago.com/news/local/Green-experiment-at-Chicago-City-Hall-stinks-waterless-urinals-copper-pipes-83755952.html

trouble.	For	example,	if	your	employer	is	thinking	about	adding	a	second	or	third	shift,	your	machines’	usage	could
double	or	triple.	Increased	usage	shortens	the	required	maintenance	interval:	if	you	run	a	single	8-hour	shift	and	do
scheduled	maintenance	every	3	months,	then	expanding	to	3	shifts	(24-hour	usage)	will	require	maintenance	on	a
monthly	basis.	If	you	don’t	recognize	this	and	stick	to	the	old	schedule,	prepare	for	some	problems!

A	Switch	(Or	Bit)	Was	Flipped

Change	types:	Configuration,	Maintenance,	Software	Version

How	a	machine	is	set	up	makes	the	difference	between	it	doing	useful	work…and	it	doing	nothing.	Some	systems	have
multiple	work	“modes,”	and	perhaps	only	one	is	useful	for	your	purposes.	This	means	that	a	well-meaning,	but	errant,
alteration	of	a	machine’s	configuration	can	render	it	non-operational.	Sometimes	the	erroneous	modification	will	target
a	specific	function,	while	confusingly	other	features	will	continue	to	work.	A	classic	example	of	this	is	accidentally
pressing	the	“mute	button”	on	a	TV.	While	the	sound	may	be	off,	this	doesn’t	affect	your	ability	to	change	channels.

You	should	also	be	suspicious	of	breakdowns	immediately	following	routine	maintenance.	It	wouldn’t	be	the	first	time
a	technician	failed	to	properly	reassemble	a	machine	after	a	service	visit!

Software	upgrades	should	also	be	on	your	radar	when	looking	at	recent	changes.	Many	a	troubleshooting	investigation
has	begun	with	these	words:	“So,	I	just	got	done	running	the	updater	and	then	it	stopped	working…”	Reverting	to	a
prior	version	is	sometimes	the	only	way	to	fix	an	issue	while	the	programmers	try	to	find	the	cause.

Don’t	Be	A	Test	Pilot

Change	type:	Overloading

Pushing	a	machine	beyond	its	design	limits	will	result	in	failures.	The	pressure	behind	these	type	of	incidents	usually
comes	from	trying	to	handle	too	much	business	with	too	few	resources.	Feeling	the	pressure	of	clients	and	deadlines,
people	may	respond	by	pushing	equipment	beyond	its	breaking	point.	Whenever	we	won	a	large	contract,	my	mind
would	race	ahead,	thinking	about	all	of	the	things	likely	to	be	broken	as	our	engineers	stretched	our	infrastructure	to	its
limits.

Given	that	many	machines	have	a	built-in	“margin	of	safety,”	failures	from	overloading	may	take	a	while	to	fully
manifest	themselves.	When	the	line	is	first	crossed,	nothing	may	happen	immediately,	and	so	further	transgressions	are
seemingly	justified.	A	truck	designed	to	haul	5,000	pounds	might	make	repeated	trips	loaded	with	6,000	lbs.	before
something	bad	happens.	Catastrophic	failures	from	overloading	can	have	a	delay,	because	damage	from	overuse	can
take	a	while	to	fully	reveal	itself.	When	the	chaos	finally	rains	down,	the	machine	might	even	be	properly	loaded,
causing	even	more	confusion	about	the	origin	of	the	issue.

When	I	was	studying	for	my	pilot’s	license,	my	instructor	and	I	were	reviewing	how	to	calculate	the	cross-wind
component	of	various	headings	and	wind	speeds.	The	Cessna	172,	the	airplane	on	which	I	was	training,	has	a
“maximum	demonstrated	crosswind	velocity”	of	15	knots.	“What	if	you	exceed	that?,”	I	asked.	He	said,
“Congratulations,	you’re	now	a	test	pilot!	But,	don’t	ever	be	a	test	pilot.”

The	Environment

Change	type:	Context

A	change	that	causes	a	failure	doesn’t	necessarily	have	to	originate	within	a	machine	itself.	Rather,	it	can	come	from
the	environment	in	which	the	machine	is	installed.

The	Weakest	Link:	this	is	where	a	system	in	a	workflow	chain	has	changed	its	output,	affecting	the	input	fed	to	a
machine	downstream.	For	instance,	imagine	two	machines	connected	by	a	conveyor	belt:	one	crushes	gravel	and	the
other	puts	the	gravel	into	bags.	The	bagging	machine	requires	the	stones	to	be	less	than	a	certain	size	or	else	it	will
become	clogged.	However,	the	crushing	machine	can	be	set	to	produce	gravel	of	any	size.	If	the	crushing	machine	is
accidentally	set	to	produce	gravel	that	is	too	large,	it	will	operate	normally.	However,	the	problem	will	appear
downstream,	at	the	bagging	machine.

What’s	Changed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 167

Whether	you	use	pipes,	cables,	or	conveyor	belts,	when	you	connect	machines	together,	a	change	in	one
might	cause	unintended	consequences	in	another.

(image:	Bob	Duran	/	CC	BY	2.0)

Machines	that	are	connected	have	implicit	expectations	about	inputs	and	outputs.	If	there’s	no	enforcement
mechanism	that	ensures	compatibility	between	machine	interfaces,	a	problem	can	easily	propagate.	These	kind	of
failures	happen	in	the	software	world	all	the	time,	where	an	unintentional	API	change	can	render	other	programs	that
rely	on	the	API	non-operational.

It’s	Getting	Hot	In	Here:	also	be	on	the	watch	for	changes	in	environmental	conditions.	Changes	to	factors	like
humidity,	temperature,	exposure	to	the	elements,	etc.	can	degrade	performance	leading	to—you	guessed	it—a
breakdown.

Spot	The	Difference

You	need	to	identify	the	information	sources	in	your	workplace	that	can	answer	the	question,	“What’s	different?”	A
good	place	to	start	is	with	the	people	closest	to	the	problem,	ask	them	if	they	can	think	of	anything	that	has	changed
recently.	Other	repositories	may	include	things	like	change	logs,	maintenance	records,	and	reports	summarizing	work
that’s	ongoing	or	recently	finished.	Some	companies	have	procedures	that	mandate	recording	the	time,	personnel
involved,	and	nature	of	modifications	made	to	key	systems.	For	the	digital	world,	there’s	typically	a	logging	option	for
most	programs,	operating	systems,	or	devices.	In	software	development,	diff’ing	two	versions	of	a	program	is	a	great
way	to	figure	out	what	has	changed	and	will	turn	up	candidates	for	further	investigation.

The	best	case	scenario	for	the	“What’s	changed?”	strategy	is	this:	you	will	discover	a	difference,	use	that	as	a	starting
point	for	your	investigation,	and	eventually	be	led	to	the	underlying	cause.	However,	it	doesn’t	always	work	out	like
that.	If	you’re	dealing	with	a	Black	Box,	your	understanding	might	be	limited	to	“this	change	is	causing	the	failure.”
That	is,	you	won’t	know	why	the	change	is	having	the	effect	it	does.	Knowledge	has	a	price:	the	cost	of	fully
understanding	cause	and	effect	might	be	prohibitive.	The	implication	of	“spot	the	difference”	is	that	the	change	can	be
put	back	to	its	former	state:	that	might	be	your	only	workaround	if	the	why	is	elusive.

What’s	Changed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 168

http://www.flickr.com/photos/bob5d/6235267035/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Diff
https://artoftroubleshooting.com/2013/02/14/failing-to-fail-duplicate-the-problem-part-2/

Caveats

I’ve	seen	troubleshooters	obsess	over	recent	changes	with	the	zeal	of	an	 Inquisitor.	You’ve	heard	the	phrase
“correlation	is	not	causation”	and	this	is	a	prime	example.	Recent	changes	are	a	great	starting	point	for	your
investigation,	but	don’t	get	so	fixated	on	them	that	you	miss	other	relevant	factors.	Until	proven	guilty,	they	should	be
treated	as	coincidental,	not	definitive	proof	of	a	particular	cause.

Uncovering	information	in	this	vein	usually	requires	interviewing	people,	so	be	careful	to	manage	the	human	side	of
investigating	recent	changes.	Be	sure	to	have	a	positive	“I’m	just	trying	to	understand	what	happened”	attitude,	lest	you
be	mistaken	for	an	interrogator.	I’ve	seen	people	fixate	on	a	recent	change	as	a	cause	for	a	breakdown	and	then
proceed	to	adopt	a	blaming	tone.	After	that	drama,	frequently	the	investigation	found	the	cause	had	nothing	to	do	with
the	recent	change.	Oops.	Playing	the	blame	game	is	a	bad	idea	if	you	want	people	to	be	forthcoming	in	the	future.	The
changes	described	in	the	above	categories	usually	result	in	unforeseen	consequences	(i.e.,	no	one	maliciously
anticipated	that	changing	X	would	cause	Y	to	fail).	The	person	who	made	the	decision	to	make	a	change	was	probably
acting	with	the	best	of	intentions.	Most	people	will	gladly	change	their	behavior	going	forward,	if	they	are	calmly	made
aware	of	how	their	actions	were	responsible	for	a	breakdown.

References:

Header	image:	Palmer,	A.	T.,	photographer.	Salinas	Valley,	California.	A	truck	being	loaded	with	guayule. 	United
States,	Salinas	Valley,	California,	1942.	Nov.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017860204/.
1	Lao	Tzu,	translated	by	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),
verse	64.
Joshua	Davis,	“Pissing	Match:	Is	the	World	Ready	for	the	Waterless	Urinal?,”	Wired,	July,	2010.
Ian	Fletcher,	“Space	flight	can	cause	astronauts’	muscle	tissue	to	waste	away	by	nearly	half,” 	MailOnline.com,
August	18,	2010.
“‘Green’	Experiment	at	City	Hall	Stinks”	NBC	Chicago.	Sunday,	Feb	7,	2010.
Ronald	Montoya,	“How	To	Prep	Your	Car	for	Long-Term	Storage,”	Edmunds.com,	July	19,	2011.

What’s	Changed?	was	originally	published	March	5,	2013.

Notes:

What’s	Changed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 169

http://en.wikipedia.org/wiki/Inquisitor
https://www.loc.gov/item/2017860204/
http://www.wired.com/magazine/2010/06/ff_waterless_urinal/all/
http://www.dailymail.co.uk/sciencetech/article-1304053/Space-flight-cause-astronauts-muscle-tissue-waste-away-nearly-half.html
http://www.nbcchicago.com/news/local/Green-experiment-at-Chicago-City-Hall-stinks-waterless-urinals-copper-pipes-83755952.html
http://www.edmunds.com/car-care/how-to-prep-your-car-for-long-term-storage.html

Dedicated	And	Shared	Resources

No	program	is	an	island.

Alex	Chaffee

You	used	to	live	by	yourself,	but	then	you	got	some	roommates	to	help	with	the	rent.	Now,	when	you	need	to	use	the
bathroom	at	6	a.m.	to	get	ready	for	work,	they’re	in	there	and	you’re	left	waiting	in	the	hallway	wearing	just	your	towel
(not	a	pretty	sight	at	that	early	hour,	I	might	add).	This	is	the	problem	of	shared	resources,	which	you	will	encounter
with	both	roommates	and	machines.

When	machines	share	resources,	sometimes	there	aren’t	enough	to	go	around.	The	ensuing	competition	is	the	basic
setup	for	many	a	troubleshooting	problem.	As	an	example	within	this	category,	let’s	look	at	one	of	the	most	common
shared	resource	situations	that	produce	intermittent	failures:	electrical	circuits.

To	prevent	electrical	wiring	from	carrying	a	dangerous	amount	of	current,	most	distribution	networks	have	amperage-
limiting	breakers	(aka,	fuses)	in	place.	For	the	same	reason,	many	machines	have	fuses	within	them	to	prevent	drawing
a	damaging	amount	of	power.

A	single	machine	on	a	dedicated	circuit	has	the	ability	to	trip	a	breaker,	but	that’s	where	its	impact	ends	as	far	as	the
electrical	system	is	concerned.	However,	when	you	start	hooking	up	multiple	machines	to	a	common	power	supply,
and	thereby	create	a	shared	resource	situation,	the	fun	begins:

Dedicated	And	Shared	Resources	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 170

Diagram:	kitchen	appliances	with	a	common	power	source.
(image:	©	Jason	Maxham)

Here	we’ve	got	a	refrigerator,	toaster,	and	oven	on	a	shared	circuit.	Let’s	say	they	have	the	following	power
consumption	characteristics:

Appliance Average	Power	Consumption
(amps)

Maximum	Power	Consumption
(amps)

Refrigerator 5 8

Toaster 4 9

Oven 6 12

Most	electrical	devices	will	have	an	average	and	maximum	power	consumption,	depending	on	the	kind	of	work	being
performed.	These	statistics	can	be	misleading	though,	because	your	usage	of	a	device	might	not	be	“average.”	For
these	simple	kitchen	appliances,	it’s	easy	to	imagine	a	variety	of	circumstances	that	would	vary	the	power
consumption	by	large	margins.	For	example,	if	the	refrigerator	was	placed	in	an	unventilated	and	un-air	conditioned
room	in	the	middle	of	a	sweltering	summer,	its	power	draw	would	be	much	higher	than	in	the	dead	of	winter.	The
oven	and	toaster	will	also	have	large	swings	in	their	power	consumption	based	on	what	kind	of	work	they	are	doing:
the	energy	required	to	keep	bread	warm	at	100°F/38°C	is	much	less	than	cooking	a	pizza	at	500°F/260°C.

You	can	see	from	the	table	that,	when	operating	alone,	each	of	these	devices	would	be	fine	on	a	15-amp	circuit:	their
maximum	current	numbers	are	safely	below	15	amps.	However,	when	they	are	all	turned	on	simultaneously,	the
chance	for	overloading	the	circuit	becomes	a	possibility.

Shared	resource	situations	like	this	can	produce	intermittent	failures.	There	will	be	times	when	these	3	kitchen
appliances	can	be	operated	simultaneously	without	incident,	and	other	times	when	using	them	together	will	trip	the
circuit	breaker.	If	you	aren’t	aware	of	the	amount	of	power	being	drawn	and	the	maximum	capacity	of	the	electrical
circuit	being	used,	the	whole	situation	will	seem	like	voodoo!	Of	course,	the	failure	condition	isn’t	really	intermittent
once	you	know	what’s	going	on:	if	the	amount	of	power	being	consumed	is	over	15	amps,	the	breaker	will	trip	100%
of	the	time.	That’s	reliable	and	predictable,	the	exact	opposite	of	an	intermittent	problem.

Dedicated	To	The	Job

You	probably	saw	it	coming,	but	a	strategy	we	can	use	to	alleviate	an	overconsumption	situation	is	to	deploy

Dedicated	And	Shared	Resources	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 171

file:///Users/jasonmaxham/Library/CloudStorage/Dropbox/JGM/Art%20of%20Troubleshooting/book/v3/img/b12be7ac40ad42c850359edb01e1a0e9c0c6186b793ca5ba4085e06d5717157b

dedicated	resources.	Let’s	stick	with	our	kitchen	appliance	example:	you	can	see	there’s	no	combination	of	appliances
(attached	to	a	single	15-amp	circuit)	that	won’t	result	in	an	overload,	if	the	maximum	current	draw	is	reached
simultaneously.

⇤
Maximum
Power
Consumption
(amps)

⇥ Total	Consumption
(amps) Potential	Overage

Refrigerator Toaster Oven

8 9 12 29 +14

8 9 — 17 +2

8 — 12 20 +5

— 9 12 21 +6

In	the	table	above	you	can	see	the	combined	effect	of	these	appliances	drawing	their	maximums	in	various	groupings.
Depending	on	which	appliances	are	turned	on,	the	overages	range	from	2-14	amps	beyond	what	our	15-amp	circuit
can	provide.	Someone’s	dinner	is	going	to	get	ruined!

If	you	wanted	to	completely	eliminate	the	possibility	of	intermittent	power	failures	in	this	clip	art	kitchen,	you	will	need
to	add	a	dedicated	electrical	circuit	for	each	appliance:

Diagram:	kitchen	appliances	with	dedicated	power	sources.
(image:	©	Jason	Maxham)

Now,	each	appliance	is	isolated	from	the	others	with	its	own	dedicated	power	supply.	Even	if	each	one	simultaneously
draws	its	maximum	rated	power,	there	will	be	no	resource	conflict.	As	a	bonus,	if	one	of	the	appliances	malfunctions
and	temporarily	tries	to	draw	as	much	power	as	it	can,	beyond	its	rated	maximum,	the	other	two	will	continue	to
function.

Getting	Your	Fair	Share,	And	Priority	When	Needed

Another	option	for	preventing	resource	conflicts	is	to	install	a	governor	(also	called	a	limiter)	that	enforces	a	certain
level	of	consumption	and	makes	sure	that	all	machines	accessing	a	shared	pool	of	resources	gets	their	“fair	share.”
Once	an	allocation	enforcement	mechanism	is	in	place,	you	can	develop	more	sophisticated	schemes	to	adapt	to

Dedicated	And	Shared	Resources	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 172

situations	where	a	particular	situation	requires	an	uneven	partitioning	of	resources.

What	has	developed	in	the	field	of	networking	is	a	classic	example	of	this	strategy.	Think	about	a	busy	cafe	that	offers
free	Internet	access:	during	peak	times	there	might	be	a	lot	of	devices	(smartphones,	laptops,	tablets,	etc.)	sharing	this
finite	resource.	Other	times,	when	it’s	just	you	and	the	tattooed	barista,	you’ll	have	no	competition	for	access	to	the
network.	The	dilemma	is	that	a	typical	Internet	connection	has	a	fixed	amount	of	bandwidth,	but	the	number	of	people
(and	how	they	use	it)	will	vary	widely	over	the	course	of	a	day.	I	think	most	cafe	owners	would	prefer	that	their
network	automatically	adapt	to	both	busy	and	quiet	periods,	without	having	to	look	over	people’s	shoulders	and	yell	at
them	to	stop	watching	videos	on	YouTube.

A	group	of	technologies	called	Quality	of	Service	(QoS)	has	emerged	that	addresses	the	type	of	problem	faced	by	a
busy	Internet	cafe.	The	basic	idea	is	that	every	device	accessing	the	network	gets	its	“fair	share”	of	the	bandwidth.	On
top	of	that,	some	QoS	schemes	employ	a	system	of	prioritization	to	ensure	that	people	using	the	network	for	certain
purposes	(like	making	phone	calls)	get	priority	access.

For	“fair	share”	use,	the	basic	idea	is	to	take	the	finite	resource	and	divide	it	evenly	by	the	number	of	consumers.	If	you
had	20	people	with	laptops	sharing	a	1000	kilobits/second	Internet	connection,	that	would	be:

1000	kilobits/second	÷	20	users	=	50	kilobits/second	per	user

Playing	Favorites

You	can	also	favor	certain	types	of	usage	with	a	prioritization	system.	Continuing	with	our	cafe	example,	let’s	say
we’ve	determined	that	people	use	the	cafe	network	primarily	for	watching	videos,	backing	up	files,	surfing	the	web,
checking	email,	and	making	phone	calls.	We	absolutely	never	want	anyone	to	have	their	phone	call	dropped.	Also,
we’d	like	people	to	be	able	to	quickly	check	their	email	when	they’re	in	a	rush.	Web	surfing	and	watching	videos	are
important,	but	not	as	important	as	phone	calls	or	email.	Then	there’s	backups,	where	the	files	being	transferred	are
large	and	can	take	days	to	transfer	over	the	network.	We’ll	let	people	do	that,	but	it	should	never	interfere	with	any	of
the	other	uses	mentioned	previously.

Now	that	we’ve	determined	what’s	important,	we	can	make	the	following	traffic	priority	list:

1.	 Voice	calls
2.	 Checking	email
3.	 Web	surfing
4.	 Watching	videos
5.	 Everything	else:	backing	up	files,	file	sharing,	etc.

Within	a	traffic	category,	we’ll	give	everyone	an	equal	allocation.	Whatever	is	left	gets	distributed	over	the	next
category	in	the	same	way,	and	so	on	until	all	the	bandwidth	is	used	up.	We’ll	also	add	the	stipulation	that	each
category	is	limited	to	50%	of	the	remaining	bandwidth:	this	is	to	preclude	a	particular	traffic	category	from	completely
preventing	all	other	uses.

Let’s	say	we	have	3	people	on	phone	calls	(requiring	120	kbps	per	call),	2	checking	email,	10	web	surfers,	4	watching
videos,	and	5	backup	programs	running.	From	our	rules,	the	bandwidth	would	be	allocated	as	follows:

Remaining
Bandwith	(kbps) Traffic	Category Allocation

(kbps)
Traffic
Category	Users

Share	Per
User	(kbps)

1000 — — — —

640 Voice 360 3 120

320 Email 320 2 160

160 Web	surfing 160 10 16

80 Video 80 4 20

0 Everything	else
(backups,	etc.)

80 5 16

Dedicated	And	Shared	Resources	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 173

http://en.wikipedia.org/wiki/Quality_of_service

Starting	with	our	total	bandwidth	of	1000	kilobits/second,	we	deduct	3	×	120	kbs	per	user	(360	kbps)	for	the	phone
calls.	Of	the	remainder	(640	kbps),	we’ve	decreed	that	up	to	50%	(320	kbps)	can	be	used	for	checking	email.	From
there,	half	of	the	leftover	(50%	×	320	kbps	=	160	kbps)	goes	to	web	surfing	and	so	on	through	the	remaining
categories,	until	all	the	bandwidth	is	allocated.	This	scheme	definitely	slows	things	down,	but	it	ensures	that	everyone
can	get	their	work	done	(if	you	can	call	sitting	in	a	cafe,	sipping	joe,	“work”).	Brownouts	associated	with	one	user
hogging	all	the	network	resources	are	also	prevented.	Furthermore,	it’s	automatic	and	flexible:	the	network	will
continue	to	function	in	a	variety	of	conditions	(busy	and	quiet)	without	any	intervention	or	policing	on	the	part	of	the
cafe	owner.

Prioritization	and	“fair	share”	allocation	are	universal	tactics	that	can	be	applied	to	any	resource	that	is	being
exhausted	and	causing	you	headaches.	Back	to	our	kitchen	appliances,	let’s	say	that	installing	additional	electrical
circuits	was	not	an	option.	If	these	appliances	had	to	live	on	the	same	circuit	indefinitely,	we	could	concoct	several
schemes	to	share	the	electricity.	Here	are	two	possibilities	(among	many)	on	how	to	make	these	machines	play	nice
together:

1.	 Install	a	3-way	switch	that	diverts	electricity	to	only	one	appliance	at	a	time.	This	will	implicitly	prioritize	usage:
the	machine	getting	electricity	will	obviously	be	the	one	most	needed	at	the	moment!

2.	 Install	a	current	limiting	system	so	that	each	appliance	is	restricted	to	its	“fair	share”	of	the	available	current.	If
there’s	one	machine	turned	on,	it	can	use	the	full	15	amps.	If	there’s	two	on	at	the	same	time,	each	one	can	draw	a
maximum	of	15	amps	÷	2	=	7.5	amps.	If	all	three	are	turned	on,	then	each	is	only	allowed	a	maximum	of	5	amps
(15	amps	÷	3).	Of	course	the	downside	is	that	the	ovens	may	not	be	able	to	reach	their	full	temperatures	this	way.
Likewise,	the	refrigerator	may	not	be	able	to	keep	its	contents	cool	if	underpowered	in	certain	conditions.
However,	this	scheme	will	prevent	the	breaker	from	tripping	and	allow	the	appliances	to	simultaneously	function
at	a	basic	level	without	interruption.	Tradeoffs…

“Umm…what	do	you	mean	there’s	only	one	bathroom?”
(image:	James	Cridland	/	CC	BY	2.0)

“You’re	Gonna	Need	A	Bigger	Boat”

To	show	you	that	I	will	courageously	state	the	obvious,	let	me	say	that	another	way	you	can	respond	to	resource
shortages	is	by…adding	more	resources.	Poof!	Was	that	your	head	exploding?	Returning	one	last	time	to	our	kitchen
appliances	example,	another	possible	solution	would	be	to	upgrade	the	capacity	of	the	shared	circuit	from	15	to	30
amps.	With	a	30-amp	circuit	in	place,	even	with	each	appliance	topping	out	at	their	maximum	consumption,	you
could	operate	all	3	simultaneously	without	a	failure:

8	(refrigerator)	+	9	(toaster)	+	12	(oven)	=	 29	amps	<	30-amp	circuit

Dedicated	And	Shared	Resources	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 174

http://www.flickr.com/photos/jamescridland/613445810/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.youtube.com/watch?v=2I91DJZKRxs

As	a	practical	matter,	the	strategy	of	increasing	the	size	of	a	resource	pool	has	its	own	complications.	For	example,	in
North	America,	most	household	electrical	circuits	are	sized	in	very	specific	capacities.	You	can’t	just	decide	you’d	like
a	17.9-amp	breaker	because	all	the	mass-produced	parts	and	building	codes	are	based	on	15	and	20-amp	circuits.
Larger	capacities	exist	beyond	that,	but	the	outlets	and	plug	types	are	different	so	you’d	also	need	to	replace	your
appliances.	In	networking,	the	same	thing	can	happen	when	you	want	to	go	beyond	a	given	capacity	boundary.	At	a
certain	point,	increasing	your	bandwidth	may	require	you	to	replace	copper	cables	with	fiber	optics,	consumer-grade
switches	with	professional-quality	gear,	etc.

Most	resource	pools	are	like	this:	there	will	be	constraints	that	prevent	you	from	adding	an	arbitrary	amount	of	capacity
that	will	perfectly	suit	your	needs.	Instead,	you’ll	have	to	add	capacity	in	amounts	that	are	standard	to	the
manufacturer	or	industry.	Often	times,	stepping	up	to	that	next	“chunk	size”	will	require	costly	upgrades	that	exceed
the	cost	of	duplicating	what	already	exists	(i.e.,	adding	dedicated	resources).

Economics

Cost	will	usually	dictate	which	resource	strategy	you	pursue.	The	typical	tradeoffs	are	as	follows:

Adding	dedicated	resources:	usually	the	most	expensive	option,	but	it’s	also	the	one	that	guarantees	the	highest
level	of	stability	and	reliability.	Isolating	a	machine	with	its	own	resources	eliminates	the	possibility	of	interactions
with	other	machines,	so	it’s	ideal	for	those	“mission	critical”	systems	that	always	need	to	be	functional.	Besides	the
up-front	cost,	the	other	downside	is	the	required	expansion	of	your	infrastructure.	This	in	turn	increases	the
overhead	of	your	operations.	Whatever	you’re	adding	(another	electrical	circuit,	another	Internet	connection,	etc.)
will	require	routine	maintenance	and	monitoring	on	an	on-going	basis.
Installing	governors	or	limiters:	usually	the	cheapest	option,	but	at	the	expense	of	throughput,	speed,	etc.	In	our
cafe	example,	a	rate-limiting	system	ensured	that	everyone	had	equal	access	to	the	network,	but	at	a	much	slower
rate	than	if	everyone	had	a	dedicated	Internet	connection.	For	this	reason,	governors	aren’t	a	catch-all	solution:	the
slower	rate	imposed	by	them	can	take	you	under	the	minimum	threshold	required	to	make	your	systems	or
business	work.
Increasing	the	pool	of	shared	resources:	depending	on	what	you’re	adding	capacity	to,	the	cost	can	vary	widely
with	this	option.	When	it’s	a	good	deal,	the	cost	will	be	incremental	and	proportional	to	the	amount	of	capacity
being	added	(e.g.,	doubling	the	capacity	will	double	the	cost).	However,	as	previously	noted,	there	are	plenty	of
examples	where	capacity	can	only	be	added	in	portions	that	may	be	much	larger	than	what	you	need.	Upgrading
to	the	next	“chunk	size”	can	mean	changes	in	your	infrastructure	that	may	exceed	the	cost	of	simply	adding
dedicated	resources.	The	upside	to	shared	resources	is	better	economics	and	reduced	overhead	versus	managing
many	small	dedicated	pools.	That’s	because	it’s	easier	to	worry	about	one	thing	versus	many	things!

References:

Header	image:	Carl	Nenzen	Loven,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/N8GdKC4Rcvs.

Dedicated	And	Shared	Resources	was	originally	published	March	22,	2013.

Notes:

Dedicated	And	Shared	Resources	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 175

https://unsplash.com/photos/N8GdKC4Rcvs

A	Common	Problem

I	try	to	isolate	the	symptoms	of	whatever	the	problem	is.	Okay,	email	isn’t	flowing.	But,	is	it	just	to	certain
addresses?	Just	outbound?	Just	inbound?	Understanding	what’s	being	affected	and	what’s	NOT	being	affected	is
really	important.

Austin	Quade

Maybe	you’ve	had	that	common	recurring	dream	where	you	forget	to	wear	pants:	to	school,	to	work,	or	anywhere
outside	the	privacy	of	your	home.	If	you’re	the	only	one	not	wearing	pants	and	stalking	around	in	public	in	just	your
underwear,	it’s	pretty	embarrassing.	However,	if	everyone	isn’t	wearing	pants—now	that’s	a	party!	(Why	can’t	I	have
that	dream?)

When	it	comes	to	wearing	pants,	context	matters:	dressing	appropriately	requires	knowing	the	situation.	Reading	the
environment	also	benefits	troubleshooting	and	is	crucial	to	choosing	the	appropriate	strategy.	You’ll	need	to
understand	how	the	parts	relate	to	the	whole,	especially	when	a	machine	is	installed	within	an	interconnected	web	of
supporting	systems.	As	we’ll	see,	knowing	whether	machines	share	symptoms	will	give	you	a	wealth	of	additional
information	that	can	help	pinpoint	the	source	of	a	problem.

Properly	assessing	the	surroundings	ensures	that	you’re	troubleshooting	at	the	correct	level:	system-wide	problems
need	to	be	solved	system-wide.	Lifting	your	head	up	and	realizing	an	issue	spans	multiple	systems	will	ensure	that	you
don’t	waste	time	trying	to	fix	a	problem	on	an	individual	basis.

A	Common	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 176

http://improveverywhere.com/missions/the-no-pants-subway-ride/

Things	We	Have	In	Common

Symptoms	that	are	shared	across	machines	can	help	you	to	quickly	isolate	the	cause	of	a	problem.	Let’s	look	at	an
example	from	the	field	of	networking	which	will	illustrate	the	power	of	tuning	into	shared	symptoms.	Consider	a
public	library	that	wants	to	provide	free	Internet	access	to	its	patrons.	Two	banks	of	computers	are	set	up	for	this
purpose:

Diagram:	computers	connected	to	the	Internet	via	two	switches	(A,B)	and	a	router.
(image:	©	Jason	Maxham)

At	first,	everything	works	fine,	but	one	day	people	using	computers	#1-3	complain	that	they	can’t	access	the	Internet.
You	verify	these	claims	while	also	noticing	that	the	patrons	sitting	at	computers	#4-6	continue	to	happily	surf	away:

A	Common	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 177

Diagram:	partial	network	outage.
(image:	©	Jason	Maxham)

Hmm…what	do	the	computers	experiencing	the	outage	(#1-3)	have	in	common?	Likewise,	how	are	they	different	from
the	computers	that	can	still	access	the	Internet	(#4-6)?

Looking	at	the	diagram,	the	answer	to	the	first	question	is:	Switch	A	and	the	cable	that	connects	it	to	the	router.	That
path	to	the	Internet	is	shared	by	all	the	computers	experiencing	the	problem	(#1-3).	Examining	Switch	A,	you	see	that
the	power	cord	came	loose	and	the	switch	is	off.	You	plug	it	back	in	and	computers	#1-3	are	able	to	access	the	Internet
once	again!

In	our	library	computer	room,	different	groupings	of	shared	symptoms	will	point	to	various	components	as	the	source
of	a	problem.	For	instance,	if	all	of	the	computers	(#1-6)	couldn’t	access	the	Internet,	then	the	router	and	the	Internet
connection	itself	would	be	the	best	candidates	to	investigate:	these	are	the	only	things	that	are	shared	by	all	the
computers.	Conversely,	if	only	one	computer	couldn’t	access	the	Internet,	there’s	a	good	chance	the	problem	is
isolated	and	internal	to	that	specific	machine.	By	the	way,	I	use	the	word	“candidate”	deliberately:	noticing	shared
symptoms	is	a	way	to	accelerate	learning	about	a	failure,	but	it’s	not	definitive	proof	of	anything.	If	all	the	computers
can’t	access	the	Internet,	there	are	a	variety	of	possibilities	that	are	logically	consistent	with	this	scenario:

The	Internet	connection	and/or	router	is	down.
Switches	A+B	are	both	down.	As	all	of	the	computers	are	attached	to	one	of	these	two	switches,	if	they	were	to
malfunction	at	the	same	time,	it	would	have	the	effect	of	knocking	out	access	to	all	of	the	computers.
Each	of	the	computers	(#1-6)	is	independently	misconfigured:	perhaps	with	a	virus	or	errant	network	settings.
Any	simultaneous	combination	of	the	above	factors.

Each	of	the	above	scenarios	could	be	true,	but	the	power	of	the	“shared	symptoms”	strategy	is	that,	most	of	the	time,
the	source	of	the	problem	will	be	the	thing	held	in	common.	If	all	6	computers	can’t	access	the	Internet,	the	law	of
simplicity	says	it	will	be	a	single	cause	the	majority	of	the	time.	To	understand	why,	let’s	think	about	the	problem
statistically	and	count	the	number	of	things	that	need	to	be	simultaneously	wrong	for	the	various	scenarios	to	be	true
(again,	we’re	considering	the	case	where	all	6	computers	are	unable	to	access	the	Internet):

#
Failures Router Switches

A+B
All	6	Computers	Properly
Configured

A	Common	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 178

0 OK OK OK

1 FAIL
(1)

OK OK

2 OK FAIL	(2) OK

3 FAIL
(1)

FAIL	(2) OK

6 OK OK FAIL	(6)

7 FAIL
(1)

OK FAIL	(6)

8 OK FAIL	(2) FAIL	(6)

9 FAIL
(1)

FAIL	(2) FAIL	(6)

Here,	I’ve	listed	the	various	possibilities	and	added	up	the	number	of	simultaneous	failures	associated	with	them.	Look
at	the	story	described	in	the	bottom	row,	which	tallies	9	simultaneous	things	wrong:	the	router	(1),	both	switches	(2),
and	all	the	computers	(6).	This	is	a	possible	failure	condition,	but	think	about	how	unlikely	it	would	be:	the	probability
of	it	happening	is	the	product	of	all	9	scenarios	multiplied	together!	The	message	rings	out	loud	and	clear:	in	situations
with	symptoms	shared	across	systems,	the	odds	favor	the	cause	of	Just	One	Thing.	Other	possibilities	require
increasingly	unlikely	coincidences	of	simultaneous	failures.

For	bed	or	lying	on	the	couch?	Yes.	For	a	job	interview?	Not	so	much.
(image:	Mark	Baylor	/	CC	BY	2.0)

Wearing	A	Belt	And	Suspenders

Failures	that	involve	shared	symptoms	will	expose	dependencies	that	may	not	have	been	obvious	when	you	first
deployed	a	system.	Sticking	with	our	library	example,	you	might	not	have	realized	that	plugging	computers	into	a
common	network	switch	would	mean	an	outage	for	all	the	attached	systems	when	that	same	switch	malfunctions.	Now
you	know!	Within	that	setup,	the	computers	are	dependent	on	the	switch	for	a	path	to	the	Internet.	Mitigating	the
negative	consequences	of	dependencies	are	necessary	if	you	want	to	create	systems	that	are	resilient	to	failures.

Let’s	say	that	our	library	is	expecting	a	visit	from	a	very	important	donor	and	celebrity.	The	library’s	public	relations
director	has	even	scheduled	a	photo	op	with	members	of	the	press	that	will	include	our	VIP	using	the	Internet.	If	the
Internet	were	to	be	inaccessible	during	the	photo	op,	it	would	be	a	huge	embarrassment.	With	so	many	people	milling

A	Common	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 179

http://www.flickr.com/photos/baylors/5483394204/
http://creativecommons.org/licenses/by/2.0/deed.en

about,	the	chance	of	a	power	cord	being	kicked	loose	is	high,	so	we	want	to	eliminate	the	chance	of	a	switch	failure
knocking	out	access.	To	make	our	system	more	robust,	we	decide	to	connect	each	computer	to	both	switches:

Diagram:	computers	with	redundant	network	connections	(green	and	red	lines).
(image:	©	Jason	Maxham)

Now,	each	computer	has	two	network	connections:	one	to	Switch	A	and	one	to	Switch	B.	When	properly	configured	to
use	the	extra	connection,	each	computer	will	have	two	separate	paths	to	the	Internet:	one	that	passes	through	Switch	A
and	another	that	passes	through	Switch	B.	We	have	begun	the	process	of	eliminating	what	are	known	as	single	points
of	failure:	parts	of	the	system	that,	when	they	stop	working,	cause	the	system	as	a	whole	to	fail.	You	can	see	that,	even
after	this	upgrade,	two	other	single	points	of	failure	remain:	the	router	and	the	Internet	connection.	How	far	you	go	to
make	your	systems	highly	available	is	an	economic	decision.	Perhaps	the	redundant	network	connections	only	require
an	extra	set	of	cables	(a	small,	one-time	cost),	but	another	Internet	connection	will	mean	an	additional	router	and
monthly	service	charges.	How	much	money	we	choose	to	spend	on	this	reliability	project	all	depends	on	how	bad	it
would	be	to	let	down	our	VIP.

Finally,	you	might	have	noticed	that	the	“shared	symptom”	strategy	is	closely	related	to	the	 “shared	resources”
problem	we	previously	discussed.	The	distinction	is	that	here	we’re	not	talking	about	competition	for	resources
between	machines,	but	rather	their	availability	to	the	system	as	a	whole.	When	Switch	A	failed	in	our	example,	it
wasn’t	because	one	machine	was	hogging	all	the	network	bandwidth.	In	fact,	how	the	switch	failed	(from	a	power	loss)
was	completely	independent	of	how	the	computers	were	using	the	network.	The	“resource”	in	jeopardy	was	a	suitable
path	to	the	Internet.

Spreading	The	Sickness	And	The	Cure

There’s	another	angle	from	which	we	can	view	the	“shared	symptoms”	strategy.	Up	to	this	point,	I’ve	discussed	it	as
information	used	to	pinpoint	the	location	of	a	failure.	However,	we	can	go	one	step	further	and	actively	attempt	to
create	the	shared	symptoms.

Let’s	return	again	to	our	library	network,	to	the	point	in	time	where	we	discovered	that	computers	#1-3	were	unable	to
access	the	Internet.	This	time,	however,	let’s	say	that	Switch	A	is	on	and	appears	to	be	functioning	normally,	at	least
based	on	its	indicator	lights.	What’s	a	quick	way	to	verify	that	Switch	A	is	the	problem?	A	clever	hack	would	be	to	take
a	computer	from	the	group	that’s	working	(#4-6),	plug	it	into	Switch	A,	and	see	what	happens.	Let’s	change	computer

A	Common	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 180

http://en.wikipedia.org/wiki/Single_point_of_failure
https://artoftroubleshooting.com/2013/03/22/dedicated-and-shared-resources/

#4’s	connection	from	Switch	B	to	Switch	A:

Diagram:	we	disconnect	computer	#4	from	Switch	B	and	move	it	to	Switch	A,	then	check	its	status.
(image:	©	Jason	Maxham)

After	we	connect	computer	#4	to	Switch	A,	we	find	that	it	can’t	access	the	Internet.	Good	job!	We’ve	taken	something
that	worked,	made	only	a	single	change,	and	now	it	doesn’t	work.	We’ve	succeeded	in	moving	the	symptom	and	have
learned	something	valuable	in	the	process.	Now,	the	evidence	that	Switch	A	is	the	culprit	is	very	strong	indeed!	The
converse	would	have	worked	as	well:	we	could	have	taken	one	of	the	computers	that	couldn’t	access	the	Internet	(#1-
3),	connected	it	to	Switch	B,	and	observed	the	results.	We	could	call	this	opposite	method	“spreading	the	cure”	and,
for	destructive	symptoms,	that	is	the	preferred	way!

One	last	possibility	for	this	situation	is	to	use	a	related	technique	called	 “moving	the	problem”:	that’s	where	you	take	a
suspicious	component,	move	its	position	in	the	system,	and	see	if	the	problem	follows.	In	this	context,	that	would
mean	taking	Switch	A	and	putting	it	in	Switch	B’s	place.	If	Switch	A	is	the	cause	of	the	failure,	then	it	should	create
problems	wherever	it	goes.

References:

Header	image:	“Funicular”.	Magda	B,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/xlRFH9KYyyg.

A	Common	Problem	was	originally	published	April	14,	2013.

Notes:

A	Common	Problem	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 181

https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/
https://unsplash.com/photos/xlRFH9KYyyg

Clear	Up	To	Here

Can	I	draw	a	box	around	the	problem?	I	use	the	visual	image	of	drawing	a	box	around	it	and	saying,	“My	entire	problem	exists	within
this	box.”	It’s	very	useful	because	then	you	can	start	drawing	smaller	boxes,	or	chopping	boxes	in	half.

Karl	Kuehn

When	troubleshooting,	the	goal	is	to	efficiently	restore	the	need	a	machine	once	served.	Opportunity	costs	constrain	how	much	can	be
learned	about	the	cause	of	a	failure	and	justify	the	reasons	for	not	fixing	something:	finding	a	workaround,	replacing	instead	of	repairing,	etc.
As	noted	in	the	section	on	economics,	just	figuring	out	what	is	wrong	can,	by	itself,	weigh	heavily	on	a	repair’s	total	cost.	Therefore,	it’s	no
coincidence	that	many	troubleshooting	techniques	are	geared	towards	knowing	as	much	about	a	problem	with	as	little	effort	as	possible.

It’s	within	this	context	that	I	bring	up	the	twin	concepts	of	narrowing	and	isolation.	When	combined,	they	aim	to	minimize	the	cost	of
learning	about	a	failure.	After	you	define	what	the	problem	is,	the	next	question	invariably	will	be:	“Where	is	the	problem?”	The	answer,	“in
a	million	possible	places,”	is	not	very	reassuring	if	you’re	footing	the	bill	for	the	repairs.	By	approximating	where	the	malfunction	lies,	the
cost	of	repair	can	begin	to	be	estimated.

Different	parts	of	a	system	will	have	varying	levels	of	accessibility,	complexity,	and	costs	associated	with	their	repair.	Many	systems	are	built
in	a	modular	way,	which	can	favor	swapping	over	repair.	A	good	illustration	is	to	think	about	the	common	scenario	of	a	light	that	won’t	turn
on.	Once	you’ve	narrowed	the	problem	down	to	the	light	bulb	itself,	you	don’t	contemplate	repairing	it.	Why	did	it	burn	out?	“Who	cares?,”
you	say	as	you	twist	a	new	one	into	its	place	and	move	on	with	your	life.	Alternatively,	if	the	bulb	is	okay	and	instead	your	narrowing	places
the	problem	within	the	electrical	system,	now	you’re	facing	a	different	cost	calculation.	The	fix	may	be	trivial	or	major	but,	if	you’re	not	an
electrician,	you’re	going	to	need	to	hire	someone.	If	you	don’t	have	the	money	to	do	that,	you	might	decide	to	set	up	a	portable	lamp	until
you	have	the	wherewithal	to	hire	someone	to	look	at	the	problem.

As	strange	as	it	might	seem,	troubleshooting	is	often	concluded	without	ever	discovering	the	precise	cause	of	a	failure.	However,	knowing	the
general	location	of	a	problem	speeds	the	decision-making	process;	often,	this	alone	is	all	you	need	to	choose	the	right	course	of	action.

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 182

https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/

If	you	cut	the	problem	in	half,	it’s	easier	to	handle…
(image:	chichacha	/	CC	BY	2.0)

I	Just	Want	Half

Continuing	with	our	theme	of	“Where	is	the	malfunction?,”	let	me	introduce	an	amazing	technique	that	can	quickly	pinpoint	the	location	of
failures	in	interconnected	systems.	It’s	called	“half-splitting”	and	its	name	is	well-chosen:	by	splitting	your	problem	space	in	half	multiple
times,	you	can	swiftly	isolate	a	failure.

I’ll	give	you	a	verbal	description	first,	but	don’t	fret	if	half-splitting	doesn’t	sink	in	from	these	words	alone.	Shortly,	we’ll	look	at	an	example
with	visuals	that	will	aid	your	understanding.	To	start	with,	we	need	a	certain	kind	of	system:	specifically,	one	that	has	a	definite	middle.
If	you	can’t	approximate	the	mid-point	between	the	two	boundaries,	well	there	goes	the	whole	“half”	concept	out	the	window!	You	can	do
half-splitting	on	just	a	portion	of	a	chained	system,	but	you	need	to	choose	a	discrete	beginning	and	end	to	bound	the	process.	Linear	systems
that	have	a	“flow”	and	move	stuff	from	point	A	to	B	are	well-suited	for	half-splitting.	The	“stuff”	being	carried	or	transformed	can	be	water,
electricity,	fuel,	information,	vehicles,	products—when	you	think	about	it,	you	realize	these	type	of	systems	are	everywhere:	pipes,	wires,
assembly	lines,	roads,	computer	programs,	data	networks,	canals,	etc.

We	also	need	a	way	to	examine	the	state	of	the	flow	as	it	goes	from	beginning	to	end.	Starting	in	the	middle	(or	as	close	as	we	can	get),	we’ll
inspect	for	the	error.	Depending	on	whether	the	error	is	present,	we’ll	either	look	forward	or	backwards	along	the	direction	of	flow.	Each
time,	we’ll	split	the	remaining	“unknown”	part	of	the	chain	in	half.	As	we	iterate,	each	inspection	halves	the	remaining	possibilities	for	the
location	of	the	error.	As	you’ll	see,	on	average	this	technique	confers	a	huge	advantage	over	inspecting	every	chain	link	one-by-one.

But	enough	of	my	yakking!	My	description	of	half-splitting	is	likely	not	enough	to	understand	how	it	works	in	practice,	so	let’s	look	at	an
example.	Let’s	consider	an	automated	assembly	line	which	decorates	teddy	bears.	An	unfinished	teddy	bear	enters	the	line	and,	at	various
stations	along	the	way,	is	decorated	and	dressed:

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 183

http://www.flickr.com/photos/chichacha/2323760575/
http://creativecommons.org/licenses/by/2.0/deed.en

Diagram:	an	assembly	line	that	decorates	teddy	bears.
(image:	©	Jason	Maxham)

Today,	something	has	gone	terribly	wrong:	the	unfinished	bears	go	in	one	end,	and	out	comes	a	pile	of	junk	on	the	other!

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 184

Diagram:	the	assembly	line	malfunctions,	destroying	each	bear	that	enters,	ejecting	a	pile	of	debris	on	the	other	side.
(image:	©	Jason	Maxham)

Clearly,	something	is	severely	malfunctioning	and	destroying	our	teddy	bears.	But	where	is	the	problem?	There	are	a	lot	of	stations	to	check
on	the	assembly	line:	45	in	all.	We	need	the	teddy	bear	assembly	line	up	and	running	ASAP—after	all,	fake	fur	is	money.	To	add	to	our
difficulties,	the	assembly	line	is	completely	covered	and	therefore	we	can’t	see	what’s	going	on	inside.	There	are	access	hatches	above	each
station,	but	going	through	the	line	and	checking	all	of	them	one-by-one	is	going	to	take	a	long	time.	Instead,	we’ll	use	the	half-splitting
technique	to	speed	up	the	process,	find	the	cause,	and	get	the	line	rolling	again.

First	off,	we	want	to	divide	the	assembly	line	into	2	equal	parts.	There	are	45	stations,	so	the	middle	station	is	#23	(there	are	22	stations	on
either	side	of	#23).	We	open	the	hatch	over	station	#23	and	take	a	look:

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 185

Diagram:	half-splitting	the	problem	means	we	start	our	investigation	in	the	middle.	What’s	happening	at	station	#23?
(image:	©	Jason	Maxham)

At	station	#23,	the	teddy	bears	are	fine.	The	assembly	line	flows	from	station	#1	to	station	#45.	By	verifying	the	correct	operation	of	station
#23,	we	know	the	problem	lies	further	downstream.	Think	about	what	we	just	did:	in	one	fell	swoop,	we	eliminated	stations	#1-23	as	the
cause	of	our	bear	tragedy.	That’s	a	very	efficient	use	of	our	time!

Now,	we	know	that	the	problem	lies	somewhere	within	stations	#24-45.	So,	let’s	half-split	again:	the	middle	station	between	#24-45	is	#35.
Inspecting	#35,	we	find	good	bears	once	again.	Hooray	again	for	our	potent	efforts:	another	12	stations	(#24-#35)	were	eliminated	in	a	single
action!	We’re	on	a	roll,	so	we’ll	continue	splitting	and	inspecting	until	we	find	the	cause.	This	table	shows	our	progress	as	we	narrow	in	on
the	cause:

Iteration Lower	Bound Upper	Bound #	of	Remaining	Possibilities Middle Middle
Status Next	Split

1 1 45 45 23 OK →

2 24 45 22 35 OK →

3 36 45 10 41 FAULT ←

4 36 40 5 38 FAULT ←

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 186

5 36 37 2 37 FAULT ←

6 36 36 1 36 OK 	

A	summary	of	what	we	did:	after	our	initial	two	splits,	we	knew	the	problem	was	between	#36-45	(the	lower	and	upper	bounds	listed	for
iteration	#3).	We	examined	the	middle	station	(#41),	and	found	a	mangled	pile	of	bear	parts!	Whenever	you	find	a	failure,	you	know	that	the
problem	must	lie	at	that	station	or	before,	and	therefore	the	next	split	you	make	will	be	backwards.	So,	that’s	what	we	did	in	iteration	#4:	we
split	backwards	and	examined	#38	(which	also	turned	out	to	be	a	failing	station).	This	leaves	only	2	stations	(#36	and	#37),	and	we	look	at
both	of	them	because	we	want	to	verify	the	transition	point	from	working	to	failed.	Station	#37	has	a	pile	of	things	that	used	to	be	a	teddy
bear,	while	station	#36	is	fine.	We’ve	found	a	working	station	followed	by	a	failing	station, 	and	that	means	we’ve	found	the	culprit:	station
#37	must	be	the	one	wreaking	havoc!

In	any	chained	system,	finding	a	working	node	immediately	followed	by	a	failing	node	is	the	jackpot.	Half-splitting	accelerates	this	process,
and	the	table	shows	the	very	quick	narrowing	of	the	range	in	which	the	error	was	located:	1-45	→	24-45	→	36-45	→	36-40	→	36-37	→	37.
As	a	consequence	of	this,	the	number	of	remaining	possibilities	dramatically	drops	by	half	after	each	iteration:	45	→	22	→	10	→	5	→	2	→	1.
It	only	took	us	6	steps	to	find	the	error,	whereas	if	we	had	gone	serially	from	the	beginning	until	the	error	was	discovered,	it	would	have	taken
37	steps!

To	clarify	the	process,	when	there	is	a	single	“weak	link	in	the	chain,”	the	goal	is	to	find	the	 first	failing	node.	In	these	type	of	systems,
everything	before	that	first	failing	node	will	work,	and	everything	after	it	will	not.	Here’s	a	visual	representation	of	how	this	works:

Many	chained	systems	behave	like	this:	when	a	link	fails,	the	failure	will	propagate	along	the	direction	of	flow.	Abstractly,	it	looks
like	the	image	above,	with	the	blue	links	representing	the	working	part	of	the	system.	After	the	first	broken	link,	the	system	fails	to

work:	these	are	the	red	links.
(image:	©	Jason	Maxham)

Half-splitting	vs	Serial	Search

Half-splitting	will	quickly	identify	that	first	failing	node	in	a	chain.	The	larger	your	system,	the	bigger	the	payoff	in	terms	of	time	saved.	Let’s
see	how	half-splitting	and	serial	search	measure	up	in	systems	of	various	sizes:

Chain
Length

Total
Inspections

Average
Inspections Advantage

Serial Half-splitting Serial Half-splitting

2 3 4 1.50 2.00 SERIAL

3 6 6 2.00 2.00 EVEN

4 10 10 2.50 2.50 EVEN

5 15 14 3.00 2.80 HALF-SPLITTING

6 21 18 3.50 3.00 HALF-SPLITTING

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 187

7 28 21 4.00 3.00 HALF-SPLITTING

8 36 26 4.50 3.25 HALF-SPLITTING

9 45 31 5.00 3.44 HALF-SPLITTING

10 55 36 5.50 3.60 HALF-SPLITTING

15 120 60 8.00 4.00 HALF-SPLITTING

20 210 90 10.50 4.50 HALF-SPLITTING

50 1,275 288 25.50 5.76 HALF-SPLITTING

100 5,050 674 50.50 6.74 HALF-SPLITTING

1,000 500,500 9,978 500.50 9.98 HALF-SPLITTING

10,000 50,005,000 133,618 5,000.50 13.36 HALF-SPLITTING

To	create	this	table,	I	wrote	a	computer	program	to	generate	all	the	possible	initial	error	positions	for	a	chain	of	a	given	length	(if	you’re
interested,	the	source	code	is	included	in	the	notes	at	the	end).	Before	we	get	into	that,	let’s	review	what	we	know	about	chain-like	systems.	I
use	the	term	“chain-like”	to	mean	any	system	where	the	output	from	the	first	node	is	fed	into	the	second,	the	second	into	the	third,	and	so	on
until	the	end.	As	noted	in	“Follow	The	Chain,”	errors	will	typically	propagate	along	a	chained	system	in	two	different	ways:

The	output	at	the	end	of	the	chain	will	be	flawed	in	some	way.
There	will	be	no	output.

The	predictable,	one-way	flow	of	these	kinds	of	systems	confers	an	advantage	for	troubleshooting:	when	you	find	an	error,	you	know	that	it
must	have	originated	somewhere	upstream!

In	the	table,	you	can	see	that	the	serial	and	half-splitting	methods	are	evenly	matched	at	the	start.	Serial	search	even	wins	the	first	round
(systems	with	2	elements),	and	then	it’s	a	tie	for	3-4.	However,	after	the	systems	grow	to	5	elements,	half-splitting	starts	to	pull	away.	At	15,
half-splitting	finds	the	cause	twice	as	quickly.	By	the	time	we	get	to	1,000	nodes,	half-splitting’s	advantage	is	overwhelming:	50	times	faster!
Remember,	these	aren’t	just	numbers,	they’re	how	much	time	it	would	take	you	to	find	the	cause.	Interested	in	working	50	times	as	long?

The	Tipping	Point:	5	Elements

To	get	a	better	understanding	of	how	the	two	methods	compare,	let’s	examine	a	chained	system	with	5	nodes.	This	is	a	good	example	to	look
at	because	it’s	the	point	where	half-splitting	gains	the	advantage	over	serial	search.	Even	though	the	average	number	of	inspections	are	nearly
the	same	(2.8	vs	3)	for	this	number	of	elements,	there	are	some	important	differences	I	want	to	point	out.	Let’s	start	by	listing	all	the
possibilities	for	the	location	of	a	single	error	in	a	system	with	5	elements,	and	see	how	the	error	propagates	down	the	chain	for	each:

Scenario
#

Node
1

Node
2

Node
3

Node
4

Node
5 Failing	Node

1 FAULT FAULT FAULT FAULT FAULT 1

2 OK FAULT FAULT FAULT FAULT 2

3 OK OK FAULT FAULT FAULT 3

4 OK OK OK FAULT FAULT 4

5 OK OK OK OK FAULT 5

For	the	serial	search	method,	you’d	start	at	node	#1	and	search	up	the	chain	until	you	find	an	error.	For	possibility	#1,	you	can	see	that	you’d
find	the	error	right	away,	with	just	a	single	inspection	(because	the	error	is	at	node	#1).	For	possibility	#2,	it	takes	2	inspections,	3	for
possibility	#3,	4	for	possibility	#4,	and	5	for	the	last	possibility.	Using	the	half-splitting	method	on	a	system	with	5	nodes,	you	always	start	at
node	#3	(the	middle)	and	then	move	forwards	or	backwards,	based	on	what	you	find.	Here’s	a	table	comparing	the	number	of	inspections
taken	by	half-splitting	and	serial	search	for	all	of	the	possible	error	locations:

Fault	Position	in	a	5-node
Chain	

Serial
Inspections

Half-splitting
Inspections

1 1 3

2 2 3

3 3 2

4 4 3

5 5 3

Total 15 14

Average 3 2.8

Median 3 3

Variance 2.5 0.2

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 188

https://artoftroubleshooting.com/2011/11/08/follow-the-chain/

Going	over	the	statistics,	you	can	see	that	the	totals	and	averages	are	nearly	the	same,	while	the	median	is	identical.	What’s	remarkably
different	is	the	variance,	which	is	a	statistical	measurement	of	sprawl	for	a	group	of	numbers:	the	more	spread	out	they	are,	the	higher	the
variance.	It’s	easy	to	see	why	the	variance	is	higher	for	serial	search:	its	range	of	inspections	is	1-5,	while	the	range	for	half-splitting	is	2-3.

Let’s	imagine	a	case	where	the	inspection	of	each	element	in	our	5-element	system	takes	one	hour	to	complete.	That	would	mean	the	serial
search	method	could	take	anywhere	from	1	to	5	hours	to	complete.	Half-splitting,	in	contrast,	would	never	take	more	than	3	hours.	That	kind
of	predictability	could	be	highly	prized	among	your	customers.

Based	on	the	data	I	generated,	my	recommendation	is	to	use	serial	search	when	the	number	of	elements	is	4	or	less.	Serial	has	other
advantages	at	this	level:	it’s	easier	to	execute	and	keep	track	of	the	process.	However,	if	controlling	the	variance	of	repair	times	is	a	big
concern	for	your	particular	situation,	then	only	use	serial	search	for	systems	with	2	elements	(and	half-splitting	for	all	the	rest).

The	Math	Behind	Half-splitting

When	using	the	half-splitting	method,	the	approximate	number	of	times	you’ll	need	to	divide	your	system	and	inspect	an	element	is	described
by	this	formula:

log2n

Where	n	is	the	number	of	elements	in	your	system.	 Logarithmic	functions	grow	slowly	(compared	to	linear	functions),	and	are	considered	the
standard	when	writing	scalable	algorithms	in	the	world	of	computer	science.	You	get	a	good	sense	of	the	power	of	logarithmic	functions
when	you	look	at	really	large	data	sets.	Consider	how	quickly	half-splitting	finds	the	error	in	a	chained	system	of	1,000,000	components:

log2(1,000,000)	=	19.93

Only	about	20	steps:	that’s	efficient!	Contrast	this	with	the	formula	for	the	average	number	of	steps	required	by	the	serial	search	method:

(n	+	1)	÷	2

Again,	n	is	the	number	of	components	in	your	system.	A	downside	for	the	troubleshooter	is	that	this	function	grows	linearly	with	the	size	of
the	chain.	That	means	that	a	serial	search	for	an	error	in	a	chain	of	one	million	components	would	take:

(1,000,000	+	1)	÷	2	=	500,000.5

That’s	right,	on	average	about	a	half-million	steps!

The	Right	Stuff

Half-splitting	requires	a	system	where	you	can	inspect	any	single	element	and,	based	on	its	state,	know	where	to	look	next.	That’s	why	it’s
especially	suited	for	transformational	or	logistical	chains:	assembly	lines,	data	networks,	computer	programs,	pipelines,	electrical	circuits,	etc.
In	our	teddy	bear	example,	we	could	examine	a	particular	station	on	the	assembly	line	and,	based	on	the	condition	of	the	bear,	know
whether	the	problem	was	upstream	or	downstream.

In	the	field	of	computer	science,	the	same	technique	speeds	lookups	in	long	lists	of	sorted	information	(in	computer	science,	the	method	is
known	as	“binary	search”).	Opening	a	sorted	list	and	inspecting	the	middle	entry,	you	call	tell	if	the	piece	of	data	you’re	seeking	is	forwards
or	backwards	in	the	list.	Again,	the	key	is	knowing	where	to	look	next	based	on	any	one	element.

The	Wrong	Stuff

You	can’t	split	every	problem	in	half	and	get	the	efficiencies	described	here:	as	noted,	the	ability	of	a	single	element	to	tell	you	the	direction
of	the	problem	is	the	key	for	half-splitting.	If	you	were	working	on	a	broken	car,	you	wouldn’t	gain	anything	from	saying:	“Let	me	split	this
problem	in	half,	I’m	going	to	see	if	the	failure	is	on	the	right-hand	side	of	the	car.”	Inspecting	a	random	windshield	wiper	or	a	spark	plug	on
the	right-hand	side	of	a	car	won’t	tell	you	in	which	direction	the	problem	lies.	A	car,	taken	as	a	whole,	is	a	collection	of	independent
subsystems:	in	that	sense,	there’s	really	no	“middle”	to	split!	Some	of	the	chain-like	subsystems	on	a	car	(fuel,	electrical,	etc.)	would	benefit
from	half-splitting,	but	only	after	other	strategies	have	identified	them	as	candidates	for	further	investigation.

Notes	and	Computer	Code:

PlanetMath’s	page	on	the	binary	search	algorithm	says	the	“average-case	runtime	complexity”	is	approximately:

log2n	−	1

The	context	given	for	the	PlanetMath	wiki	page	is	dictionary	lookups,	which	is	similar	to	the	use	of	half-splitting	when	troubleshooting:	each
iteration	halves	the	number	of	possibilities	leading	to	big	efficiencies	as	the	size	of	the	data	set	grows.	However,	the	use	isn’t	exactly	the
same	and	I	wanted	to	compare	actual	numbers.	I	needed	a	way	to	generate	real	data	comparing	both	methods	in	the	context	of
troubleshooting.	The	data	I	generated	was	very	close	to	the	“log2n	−	1”	approximation.	However,	I	found	half-splitting	for	the	purposes	of
troubleshooting	is	closer	to	just	log2n.	It	would	be	cool	to	have	a	formula	that	gave	the	exact	answer!	I’m	not	a	mathematician,	so	I’m	not
sure	if	this	is	even	possible.	Any	takers	to	figure	it	out?

For	the	half-splitting	program	I	wrote,	it	took	a	while	for	me	to	figure	out	the	correct	algorithm	to	detect	the	position	of	the	initial	error.	For

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 189

http://en.wikipedia.org/wiki/Logarithmic_growth
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://planetmath.org/binarysearch

my	first	few	tries,	my	implementation	took	a	lot	more	steps	than	what	I	considered	to	be	the	ideal.	The	breakthrough	came	when	I	noticed
that,	if	the	last	and	current	“middles”	chosen	by	the	algorithm	converged,	the	answer	had	been	found.	This	insight	replaced	a	tangled	mess	of
“if”	statements	in	my	code.	I	also	made	the	decision	to	record	the	unique	number	of	times	the	program	examined	a	particular	chain	element.
This	brought	the	number	of	inspections	in	line	with	what	I	had	experienced	doing	the	algorithm	by	hand	on	paper.	I	also	think	this	better
simulates	what	a	person	would	experience:	specifically,	in	real	life,	anytime	you	notice	a	“WORKING”	element	followed	by	an	“ERROR,”
you	know	you’ve	found	the	failing	node.	With	the	“converging	middles”	solution,	sometimes	the	computer	will	take	an	extra	step	that	a
human	wouldn’t.	You	could	probably	code	this	intelligence	into	the	program,	but	I	liked	the	simplicity	of	the	“converging	middles”	code	and
so	I	decided	to	leave	it	alone.	If	you	have	a	better	solution,	feel	free	to	post	it!

Anyway,	here’s	the	program	I	wrote	(in	 ruby)	to	simulate	and	compare	the	serial	and	half-splitting	methods	of	troubleshooting:

#serial_vs_half_splitting.rb
#Author:	Jason	Maxham,	https://artoftroubleshooting.com/
#Purpose:	to	simulate	and	compare	troubleshooting	of	"chain-like"	systems
#(assembly	lines,	pipelines,	networks,	etc.)	with	both	the	serial	and	
#half-splitting	methods.	May	the	best	algorithm	win!

def	create_chain(chain_length,	first_error_position)
		chain	=	[]
		for	chain_position	in	1..chain_length
				if	chain_position	<	first_error_position
						chain.push("WORKING")
				else
						chain.push("ERROR")
				end
		end
		return	chain
end

def	find_error_by_half_splitting(chain)
		#we	need	to	set	and	keep	track	of	these	variables:
		lower_bound	=	0
		upper_bound	=	chain.length	-	1
		last_chain_middle	=	''
		#keep	track	of	the	elements	we've	inspected	to	compare	to	the	serial	method
		inspections	=	{}

		#do	the	first	split	and	inspection
		range_length	=	upper_bound	-	lower_bound
		chain_middle	=	(range_length.to_f	/	2.to_f).ceil
		inspections[chain_middle]	=	1

		while	1	do
				if	(chain[chain_middle]	==	"WORKING")
						#error	is	forwards	in	the	chain:	split	forwards,	set	the	
						#lower	bound	to	the	current	middle	element	plus	1
						lower_bound	=	chain_middle	+	1
				else
						#error	is	backwards	in	the	chain:	split	backwards,	set	the	
						#upper	bound	to	the	current	middle	element	minus	1
						upper_bound	=	chain_middle	-	1
				end
				inspections[chain_middle]	=	1

				#set	the	last_chain	middle	to	the	current	one
				last_chain_middle	=	chain_middle
				#calculate	new	middle
				chain_middle	=	((lower_bound	+	upper_bound).to_f	/	2.to_f).ceil

				#It's	all	over	when:	the	current	and	previous	middles	converge
				if	(last_chain_middle	==	chain_middle)
						return	inspections.length,	last_chain_middle	+	1
				end
		end
end

def	find_error_serially(chain)
		inspections	=	0
		first_error_position	=	0
		chain.each_with_index	do	|element,	index|
				inspections	+=	1
				if	element	==	"ERROR"

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 190

http://www.ruby-lang.org/

						first_error_position	=	index	+	1
						#stop,	we've	found	it!
						break
				end
		end
		return	inspections,	first_error_position
end

def	generate_chains(chain_length)
		#we'll	keep	track	of	the	number	of	times	that	the	serial	and	half-splitting	
		#methods	find	a	different	initial	error.	NOTE:	this	should	never	happen,
		#but	it	was	useful	when	I	was	debugging!
		num_errors	=	0

		#also	keep	track	of	the	number	of	times	we	looked	at	an	element	in	the	chain.	
		#the	point	of	this	exercise	was	to	see	how	much	more	efficient	
		#half-splitting	is	versus	serially	searching	through	the	elements
		#of	a	real	system	when	troubleshooting.
		total_serial_inspections	=	0
		total_hs_inspections	=	0

		#create	chains,	with	the	initial	error	in	every	possible	position
		for	initial_error_position	in	1..chain_length
						chain	=	create_chain(chain_length,	initial_error_position)
						(serial_inspections,	serial_error_position)	=	find_error_serially(chain)
						(hs_inspections,	hs_error_position)	=	find_error_by_half_splitting(chain)
						unless	(serial_error_position	==	hs_error_position)
								num_errors	+=	1
						end	
						total_serial_inspections	+=	serial_inspections
						total_hs_inspections	+=	hs_inspections
		end
		return	num_errors,	total_serial_inspections,	total_hs_inspections
end

def	serial_vs_half_splitting
		total_errors	=	0
		total_serial_inspections	=	0
		total_hs_inspections	=	0

		calculate_these	=	(2..20).to_a
		calculate_these.push(50,100,1000,10000)

		calculate_these.each	{	|chain_size|		
						(errors,	s_inspections,	hs_inspections)	=	generate_chains(chain_size)
						puts	"#{chain_size}\t#{s_inspections}\t#{hs_inspections}\t#{(s_inspections.to_f	/	chain_size.to_f)}\t#{hs_inspections.to_f	/	chain_size.to_f}"
						total_errors	+=	errors
						total_serial_inspections	+=	s_inspections
						total_hs_inspections	+=	hs_inspections
		}

		puts	"SERIAL	AND	HALF-SPLITTING	DIDN'T	FIND	THE	SAME	ANSWER:	#{total_errors}	TIMES"
		puts	"SERIAL	SEARCHING	REQUIRED	#{total_serial_inspections}	INSPECTIONS	OF	CHAIN	ELEMENTS"
		puts	"HALF-SPLITTING	REQUIRED	#{total_hs_inspections}	INSPECTIONS	OF	CHAIN	ELEMENTS"
end
serial_vs_half_splitting

References:

Header	image:	Mason	Kimbarovsky,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/qEwJFHU3uOE.
PlanetMath,	Binary	Search.

Clear	Up	To	Here	was	originally	published	April	26,	2013.

Notes:

Clear	Up	To	Here	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 191

https://unsplash.com/photos/qEwJFHU3uOE
http://planetmath.org/binarysearch

Team	Spirit

I	form	my	opinion,	but	I	also	want	to	tap	into	other	people’s	past	experiences.	Because	I’ve	seen	people	work	a
long	time,	only	to	have	someone	come	up	and	say,	“I	had	that	problem	last	week,	do	this!”

Dan	McCormick

Troubleshooting	is	often	a	solitary	exercise:	the	cost	of	labor	favors	the	lone	wolf	problem-solver.	The	cable	guy	is
usually—just	one	guy.	I’ve	never	called	a	plumbing	service	and	had	a	whole	team	of	plumbers	show	up.	Especially
when	repair	work	is	an	unreimbursed	cost	for	a	company	(e.g.,	on-site	warranty	service),	it’ll	likely	be	just	one	person
on	the	call.

I’ve	seen	“collaborative	environments,”	where	troubleshooters	work	in	close	proximity	and	can	rely	on	each	other	for
help.	Think	about	an	auto	repair	shop	where	the	mechanics	have	their	own	repair	bays,	but	colleagues	are	just	a	shout
away	to	provide	assistance.	Still,	this	is	only	a	small	tweak	on	the	solitary	problem-solving	routine:	you’re	expected	to
work	by	yourself	and	others	are	consulted	only	when	you’re	stuck.

Of	course,	there’s	another	way	to	troubleshoot:	with	a	team.	I’ve	worked	on	large-scale	problems	that	were	too
complicated	(and	too	important)	to	leave	to	a	single	person.	When	the	company’s	future	is	on	the	line,	expect	to	be
given	all	the	resources	you	need	to	resolve	an	issue.	That	will	inevitably	include	some	extra	personnel.

However,	you	might	not	be	used	to	problem-solving	in	a	group	setting.	If	you	are	lucky	enough	to	command	an	entire
troubleshooting	team,	you’ll	want	to	make	the	most	of	this	precious	human	resource.	Always	start	with	a	brainstorming

Team	Spirit	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 192

and	organizing	session	where	you	discuss	strategies	and	assign	roles.	Since	you’ll	have	everyone’s	attention,	this	is	the
time	to	really	open	things	up	and	consider	all	of	your	options.	During	this	meeting,	you’ll	also	want	to	address	these
issues:

Communication

Especially	if	you’re	troubleshooting	in	the	midst	of	a	crisis,	there	will	be	lots	of	people	interested	in	the	outcome:
customers,	management,	other	teams,	etc.	You	don’t	want	these	requests	for	updates	to	be	a	constant	source	of
interruptions	for	the	people	actually	solving	the	problem.	Therefore,	be	proactive	and	assign	someone	to	take	on	the
role	of	the	communicator.	They	will	relay	the	team’s	status	to	interested	parties	and	free	the	rest	of	your	team	to
actually	get	some	work	done.	Another	tip:	have	this	person	set	clear	expectations	as	to	the	frequency	of
communication.	You	will	receive	fewer	interruptions	from	interested	parties	if	they	know	they	will	be	receiving	updates
on	a	regular	basis.

Alternatives	And	A	“Plan	B”

Of	course,	you	should	put	most	of	your	personnel	on	the	“high-percentage	play”	(i.e.,	the	strategy	you	feel	is	most
likely	to	pay	off).	But,	if	your	team	is	large	enough,	consider	breaking	into	multiple	teams,	each	of	which	will	pursue
alternate	theories	regarding	the	cause.	One	such	team	can	even	be	assigned	to	“Plan	B,”	preparing	for	the	eventuality
that	you	will	not	find	the	cause	or	fix	the	problem.	This	team	could	be	building	out	a	backup	system	or	investigating
workarounds.

Setting	Thresholds

Once	you’ve	decided	on	a	strategy,	put	limits	on	how	long	you’ll	work	without	finding	a	solution	(by	the	way,	this	is	a
good	idea	for	the	solo	troubleshooter	as	well).	The	threshold	can	be	the	achievement	of	a	specific	goal,	but	always
include	a	time	limit	as	well.	For	example:

“We’ll	spend	the	next	2	hours	trying	to	determine	if	replacing	the	valve	will	bring	the	pressure	back	to	normal	levels.	If
the	pressure	rises	above	100	lbs./sq.	in.,	then	we’ll	stop	and	shut	off	the	boiler	to	avoid	an	explosion.”

The	thresholds	set	in	this	example	are:

1.	 Timed	goal:	work	through	a	specific	fix	for	the	next	2	hours,	then	break	and	reassess.
2.	 Pressure:	stop	and	mitigate	if	the	pressure	rises	above	100	lbs./sq.	in.

Time	limits	are	a	crucial	backstop	to	arrest	the	momentum	of	a	plan	that	is	going	nowhere.	Tunnel	vision	can	be
difficult	to	overcome	unless	there’s	a	prearranged	means	to	stop	the	madness.

Keep	Someone	“Up	Above	It”

One	person	needs	to	be	managing	and	monitoring	everything	listed	above	and	making	corrections	as	needed.	Ideally,
they’re	not	involved	with	the	actual	troubleshooting	and	therefore	won’t	get	swept	up	in	the	details.	If	you’ve	set
thresholds,	this	person	is	watching	the	timer	and	the	other	parameters	you’ve	agreed	upon.	If	you’re	pursuing	multiple
alternatives,	they’re	checking	in	with	the	various	teams	on	a	regular	basis,	synthesizing	this	information	and	deciding
to	either	maintain	course	or	change	direction.

Teamwork,	An	Every	Day	Thing

If	you	have	the	latitude	to	change	how	you	problem-solve,	consider	introducing	more	teamwork.	Specifically,	try	it	in
pairs.	I’ve	done	“pair	troubleshooting”	on	numerous	occasions	and	have	found	working	with	a	competent	partner	has
many	benefits:

Improved	quality	of	work:	problem-solving	with	someone	else	“keeps	you	honest.”	Knowing	your	work	is	being
scrutinized	makes	you	less	likely	to	take	the	“easy	road”—this	means	fewer	shoddy	repairs.	Fixes	will	typically
conform	to	the	person	with	higher	standards.
Faster	resolution:	more	collective	experience	means	it’s	likely	that	someone	has	“seen	this	one	before.”	Four	eyes
will	view	the	problem	more	clearly	and	four	hands	will	speed	the	work	along.
Less	chance	of	pursuing	dead-ends: 	if	you’re	on	the	“road	to	nowhere,”	someone	will	get	bored	or	frustrated	and

Team	Spirit	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 193

demand	a	reassessment	of	the	situation.
Better	ideas:	two	different	points	of	view,	and	you	both	can	ask	 “stupid”	questions	to	get	the	team	unstuck.
Keeps	you	externally	focused:	the	interactive	and	social	aspects	of	working	with	a	partner	is	another	hook	to
remaining	present	while	problem-solving.

Attention	lone	wolves:	you’ll	hunt	bigger	game	in	a	pack.
(image:Tambako	The	Jaguar	/	CC	BY-ND	2.0)

Of	course,	putting	two	workers	on	a	troubleshooting	project	has	an	opportunity	cost:	they	could	be	pursuing	their	own
repair	projects	individually.	If	two	employees	are	able	to	solve	a	problem	in	the	same	amount	of	time	that	a	single
worker	could,	all	pair	troubleshooting	would	do	is	double	your	labor	costs!	However,	my	impetus	to	experiment	with
pair	troubleshooting	originated	from	my	very	positive	experiences	with	“pair	programming”	in	the	world	of	software
development.	Researchers	Alistair	Cockburn	and	Laurie	Williams	studied	pairing	in	that	context	and	found:

The	significant	benefits	of	pair	programming	are	that
•	many	mistakes	get	caught	as	they	are	being	typed	in	rather	than	in	QA	test	or	in	the	field	(continuous	code
reviews);
•	the	end	defect	content	is	statistically	lower	(continuous	code	reviews);
•	the	designs	are	better	and	code	length	shorter	(ongoing	brainstorming	and	pair	relaying);
•	the	team	solves	problems	faster	(pair	relaying);
•	the	people	learn	significantly	more,	about	the	system	and	about	software	development	(line-of-sight	learning);
•	the	project	ends	up	with	multiple	people	understanding	each	piece	of	the	system;
•	the	people	learn	to	work	together	and	talk	more	often	together,	giving	better	information	flow	and	team
dynamics;
•	people	enjoy	their	work	more.
The	development	cost	for	these	benefits	is	not	the	100%	that	might	be	expected,	but	is	approximately	15%.	This	is
repaid	in	shorter	and	less	expensive	testing,	quality	assurance,	and	field	support.

Alistair	Cockburn	and	Laurie	Williams,	“The	Costs	and	Benefits	of	Pair	Programming” 	1

To	the	best	of	my	knowledge,	no	one	has	studied	“pair	troubleshooting,”	but	personal	experience	tells	me	the	benefits

Team	Spirit	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 194

https://artoftroubleshooting.com/2012/02/19/a-different-point-of-view/
https://artoftroubleshooting.com/2013/04/16/be-present/
http://www.flickr.com/photos/tambako/5460004298/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://en.wikipedia.org/wiki/Pair_programming

are	similar.	Apart	from	software	development,	I	also	paired	up	systems	administrators	on	my	teams	and	had	them
troubleshoot	together.	I	would	overhear	them	catching	each	other’s	errors—mistakes	that	would	have	been	costly	to	fix
later	on!	I	was	also	impressed	with	how	knowledge	got	spread	around	by	team	members	collaborating	and	talking	to
each	other	(the	study	mentions	this	benefit	as	“the	project	ends	up	with	multiple	people	understanding	each	piece	of
the	system”).

I	think	the	strongest	argument	for	the	adoption	of	pair	troubleshooting	is	the	quality	of	work	produced.	The
Cockburn/Williams	study	showed	that	pairs	produced	software	with	15%	fewer	defects	(up	to	a	50%	reduction	in	other
studies)	with	only	an	increased	cost	of	15%.	Depending	on	the	circumstance,	higher	quality	work	can	more	than	justify
the	additional	cost	of	pairing.	If	you’re	in	an	industry	where	defects	in	repair	work	are	extremely	costly	(or	deadly),
then	it	warrants	your	consideration.	Software	bugs	can	have	a	huge	cost:	they	suck	up	the	time	of	customer	service
reps,	field	technicians,	and	must	be	eventually	found	and	fixed	(for	more	on	the	topic,	see	the	“Economics”	section	in
the	Cockburn/Williams	study,	it’s	quite	compelling).	Likewise,	“bugs”	in	your	repair	work	can	also	exact	a	hefty	price:
you	know	this	all	too	well	if	you’ve	ever	been	called	back	to	fix	something	you	thought	was	already	fixed.	Customers
want	the	confidence	of	knowing	it	was	fixed	right	the	first	time!

Pair	troubleshooting	won’t	be	a	good	fit	in	all	circumstances:	your	industry’s	economics	and	organization’s	culture	will
circumscribe	the	possibilities	for	introducing	teamwork.	Personnel	is	a	factor	too:	I’ve	worked	with	some	“lone	wolf”
types	that	were	quite	resistant	to	the	concept.	Can	you	convince	them	to	hunt	with	the	pack?

References:

Header	image:	“Workers	disembark…“.	sol,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/tZw3fcjUIpM.
1	Alistair	Cockburn	and	Laurie	Williams,	“The	Costs	and	Benefits	of	Pair	Programming.”

Team	Spirit	was	originally	published	April	28,	2013.

Notes:

Team	Spirit	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 195

https://unsplash.com/photos/tZw3fcjUIpM
http://collaboration.csc.ncsu.edu/laurie/Papers/XPSardinia.PDF

Bottlenecks

Once	you	solve	your	top	problem,	you’ve	got	a	new	top	problem.

Alex	Chaffee

Interconnected	systems	can	suffer	from	the	presence	of	bottlenecks:	individual	components	that	limit	the	speed	of	the
system	as	a	whole.	Limitations	like	these	are	an	interesting	concept	because	every	system	has	a	ceiling	to	its
throughput.	If	you	buy	a	printer	that	can	churn	out	a	maximum	of	10	pages	per	minute,	you	probably	wouldn’t	think	of
it	as	having	a	bottleneck,	even	though	there’s	some	component	inside	that	ultimately	restricts	it	to	that	particular	speed.
However,	a	throughput	of	10	pages	per	minute	would	definitely	be	an	annoyance	for	a	printer	that	was	advertised	as
capable	of	30	pages	per	minute.	When	a	machine	is	operating	normally,	its	capacity,	though	finite,	is	simply	part	of
your	assumption	for	how	it	should	function.	However,	when	a	machine’s	capacity	fails	to	meet	expectations—now
we’re	dealing	with	a	bottleneck!

My	point	isn’t	that	bottlenecks	aren’t	real,	but	they	are	qualitative	and	exist	in	relative	terms:	 “It’s	going	too	slow!”	is
the	cry	that	is	often	heard.	But,	slow	compared	to	what?	When	a	system’s	capacity	is	not	enough	to	meet	demand
(compared	to	some	ideal	standard),	then	the	cause	of	the	limited	throughput	is	called	a	bottleneck.	Identifying	the
standard	is	important,	because	dealing	with	bottlenecks	often	blurs	the	line	between	troubleshooting	and	engineering.
When	a	system	is	bottlenecked	because	of	a	malfunction,	then	this	is	clearly	the	domain	of	troubleshooting:	the	system
had	a	certain	throughput	in	the	past,	and	the	goal	is	to	get	it	back	there.	However,	when	a	system	is	employed	in	a
new	way,	or	when	it’s	asked	to	do	more	than	it	should,	it	may	bump	up	against	its	design	limitations.	When	that’s	the

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 196

source	of	the	slowdown,	overcoming	those	limits	by	expanding	capacity	or	performance	tuning	isn’t	technically
troubleshooting.

I	point	this	out	because	the	people	who	say	“Just	make	it	go	faster!”	might	not	be	aware	of	the	distinction.	From	their
perspective,	all	they	know	is	that	the	system	isn’t	performing	up	to	their	expectations.	It’s	important	for	you,	the
troubleshooter,	to	keep	this	difference	in	mind:	one	path	is	about	restoring	functionality	and	the	other	is	about	making
process	improvements	(or	resetting	expectations).	If	you’re	responsible	for	a	machine,	you’ll	likely	be	asked	to
investigate	in	either	case,	so	we’ll	discuss	both.	After	explaining	the	situation	to	whomever	is	experiencing	the
problem,	if	you	also	include	a	clever	way	to	improve	capacity,	you’ll	look	really	sharp.

Bottlenecks	restrict	flow.	For	this	party,	that	might’ve	been	a	good	thing.
(image:	Erich	Ferdinand	/	CC	BY	2.0)

The	Weakest	Link

Chained	systems	flowing	along	a	single	path	will	inevitably	have	nodes	that	complete	their	tasks	at	different	speeds.
There’s	nothing	wrong	with	this,	it’s	simply	the	nature	of	whatever	the	machine	was	designed	to	accomplish.	If	we’re
talking	about	an	oil	refinery,	the	various	sequential	steps	(fractional	distillation,	processing/cracking,	treating/blending)
are	in	different	states	of	technological	advancement.	That	one	phase	takes	longer	than	another	is	a	reflection	of	the
nature	of	the	work	being	performed	and	the	amount	of	brainpower	(i.e.,	innovation)	that	has	been	brought	to	bear	on
the	problem.	Processes	that	were	once	very	slow	might	be	comparatively	quick	now.

The	problem	with	chaining	processes	together	is	that	the	overall	throughput	of	the	system	will	be	limited	by	the	rate	of
the	slowest	one.	If	a	node	in	a	chain	can	only	handle	one	item	at	a	time,	it	must	wait	for	the	next	node	to	be	clear
before	it	can	send	its	output	down	the	line.	If	nodes	have	different	completion	times,	some	will	finish	early	and	sit	idle.
The	strict	definition	of	a	bottleneck	is	“a	narrowing”:	the	type	of	narrowing	relevant	to	our	discussion	is	a	reduction	in
the	rate	of	flow,	observed	when	crossing	between	two	nodes.	I	want	you	to	see	how	this	works,	so	let’s	look	at	a
simple	3-node	assembly	line	system	that	paints	Christmas	Tree	ornaments.	Station	A	cleans	the	ornament,	B	paints	it,
and	C	dries	the	paint.	A	→	B	→	C:

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 197

http://www.flickr.com/photos/erix/8635515464/
http://creativecommons.org/licenses/by/2.0/deed.en

Diagram:	an	assembly	line	that	cleans,	paints,	and	dries	Christmas	Tree	ornaments.
(image:	©	Jason	Maxham)

The	three	steps	have	different	completion	times:

Station Work
Performed

Completion	Time
(mins.)

Ornaments	Per
Hour

%	Change	In
Speed

A Cleaning 5 12 N/A

B Painting 10 6 -50%

C Drying 20 3 -50%

Technically,	we’ve	got	two	bottlenecks	here,	right	in	a	row!	Going	from	A	→	B	represents	a	50%	reduction	in	the	rate
of	speed:	12	ornaments	per	hour	to	6.	Likewise	for	B	→	C,	which	goes	from	6	to	3.	Each	of	these	transitions	is	a
“narrowing”	of	the	flow	rate	and	therefore	a	bottleneck,	but	the	slowest	step	(C)	will	ultimately	control	the	overall	rate
of	this	system.	Here’s	a	chart	showing	the	progress	of	4	ornaments	(numbered	1-4)	passing	through	the	stations	(A-C)	of
the	painting	assembly	line:

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 198

Elapsed	Time Ornament	#1 Ornament	#2 Ornament	#3 Ornament	#4

00:00 START START START START

00:05 A START START START

00:10 B A START START

00:15 B A START START

00:20 C B A START

00:25 C B A START

00:30 C B A START

00:35 C B A START

00:40 DONE C B A

00:45 	 C B A

00:50 	 C B A

00:55 	 C B A

01:00 	 DONE C B

01:05 	 	 C B

01:10 	 	 C B

01:15 	 	 C B

01:20 	 	 DONE C

01:25 	 	 	 C

01:30 	 	 	 C

01:35 	 	 	 C

01:40 	 	 	 DONE

Time
Summary

	 Ornament	#1 Ornament	#2 Ornament	#3 Ornament	#4

Waiting	Time 00:00 00:15 00:25 00:25

Completion	Time 00:35 00:50 01:00 01:00

First	off,	notice	that	the	first	ornament	passed	through	the	line	in	35	minutes.	This	is	just	the	sum	of	the	completion
times	for	the	individual	stations	(5	+	10	+	20	=	35).	Then	things	slow	down	a	bit:	the	second	ornament	passes	through
the	line	in	50	minutes.	What	gives?	You	can	see	from	the	table	that	Ornament	#2	spent	15	minutes	waiting	for
Ornament	#1	to	finish	(idle	moments	are	shown	in	red,	time	spent	working	in	green).	Because	a	station	can	only
handle	a	single	ornament	at	one	time,	when	it’s	occupied	the	ornament	coming	behind	must	wait.	For	example,	at	the
10	minute	mark,	Ornament	#2	was	done	with	cleaning	at	Station	A;	however,	it	had	to	wait	another	5	minutes	for
Ornament	#1	to	vacate	Station	B	so	it	could	move	on.	Things	slow	down	even	further	with	Ornament	#3,	which	takes
60	minutes	to	get	through	the	line.	At	this	point,	the	total	completion	time	stabilizes:	Ornament	#4	also	takes	60
minutes	to	finish.	Ornaments	#3	and	#4	each	spend	25	minutes	waiting	for	subsequent	stations	to	open	up.

Once	the	system	is	fully	loaded,	an	ornament	gets	done	every	20	minutes:	00:40,	01:00,	01:20,	and	01:40.	This	is	what
we	were	talking	about	when	we	said	that	a	chained	system’s	rate	will	be	limited	by	the	slowest	node	(in	this	case	that’s
the	drying	station,	C).

Not	Every	Increase	Matters

Now	that	we’ve	got	a	basis	for	comparison,	let’s	look	at	what	happens	when	a	problem	occurs	in	the	painting	line.
Let’s	say	that	the	cleaning	and	painting	stations	(A	and	B)	both	use	compressed	air	from	the	same	air	compressor.	Over
time,	the	compressor	has	degraded	and	now	it	takes	longer	to	recharge	and	maintain	the	desired	pressure	level.	This
result	is	an	increase	in	the	work	time	for	Stations	A	and	B	of	5	minutes	each:

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 199

Station Work
Performed

Completion	Time
(mins.)

Ornaments	Per
Hour

%	Change	In
Speed

A Cleaning 10 6 N/A

B Painting 15 4 -33%

C Drying 20 3 -25%

We	still	have	bottlenecks	from	A	→	B	(-33%)	and	B	→	C	(-25%),	but	they’re	not	as	large,	percentage-wise,	as	before.
What	remains	the	same	is	that	Station	C	is	still	the	slowest	to	complete	its	work	at	20	minutes	per	ornament.

With	the	line	slower,	let’s	see	what	happens	when	we	send	through	four	more	ornaments	(numbered	5-8):

Elapsed	Time Ornament	#5 Ornament	#6 Ornament	#7 Ornament	#8

00:00 START START START START

00:05 A START START START

00:10 A START START START

00:15 B A START START

00:20 B A START START

00:25 B A START START

00:30 C B A START

00:35 C B A START

00:40 C B A START

00:45 C B A START

00:50 DONE C B A

00:55 	 C B A

01:00 	 C B A

01:05 	 C B A

01:10 	 DONE C B

01:15 	 	 C B

01:20 	 	 C B

01:25 	 	 C B

01:30 	 	 DONE C

01:35 	 	 	 C

01:40 	 	 	 C

01:45 	 	 	 C

01:50 	 	 	 DONE

Time
Summary

	 Ornament	#5 Ornament	#6 Ornament	#7 Ornament	#8

Waiting	Time 00:00 00:10 00:15 00:15

Completion	Time 00:45 00:55 01:00 01:00

Looking	at	the	numbers,	some	amazing	and	very	counter-intuitive	things	have	happened.	First,	idle	times	while	in	the
queue	have	actually	decreased!	Ornament	#6	waited	5	minutes	less	(versus	Ornament	#2	in	our	previous	test	run),
while	Ornaments	#7	and	#8	waited	10	minutes	less	each	(versus	#3	and	#4).	As	far	as	time	in	the	queue	is
concerned,	Ornaments	#7	and	#8	took	one	hour	to	make	it	through	the	line,	the	same	as	before	the	compressor	was

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 200

having	problems.	Perhaps	most	astonishing	is	that	the	throughput	of	the	system	was	exactly	the	same:	once	the	system
was	loaded,	an	ornament	rolled	off	the	line	every	20	minutes	at	00:50,	01:10,	01:30,	and	01:50!

Once	again,	we	observe	that	the	slowest	station	controls	the	pace	of	a	chained	system.	We’ve	also	learned	something
new	in	this	run:	the	limiting	node	can	mask	problems	elsewhere.	Because	the	total	throughput	remained	the	same,	you
might	not	have	noticed	the	compressor	problem	until	it	was	too	late.	Most	importantly,	if	you’re	troubleshooting	a	“it’s
too	slow”	kind	of	problem	in	an	interconnected	system,	you	must	focus	on	the	narrowest	bottleneck	(i.e.,	the	slowest
station)	for	your	efforts	to	have	any	effect.

Show	Me	The…Data!

How	do	we	find	that	narrowest	bottleneck	so	we	know	where	to	direct	our	efforts?	The	best	case	scenario	to	rapidly
pinpoint	the	location	of	a	bottleneck	is	operational	data.	If	you	had	monitors	recording	the	flow	rate	at	each	of	the
stations	in	the	ornament	assembly	line,	you	could	easily	see	a	decrease	in	speed	either	numerically	or	graphically.
However,	that’s	a	level	of	preparation	I	rarely	see,	except	for	those	organizations	that	have	been	badly	burned	by
bottlenecks	in	the	past	(like	mine!).	Only	at	the	very	end	of	my	tenure	as	a	CTO	could	I	lay	claim	to	such	a	level	of
preparedness	(by	then	I	was	a	data	fanatic),	but	even	so	we	didn’t	monitor	everything.	To	find	a	bottleneck	in	a	mass-
produced,	off-the-shelf	item,	it	might	be	hard	to	add	the	type	of	probes	necessary	for	this	level	of	awareness.

Slow	Your	Roll,	Even	More

Let’s	say	you	have	a	hunch	that	a	particular	link	in	a	chain	is	the	narrowest	bottleneck.	We	know	that	the	throughput	of
a	chained	system	is	controlled	by	the	slowest	node,	so	an	easy	way	to	vet	a	suspect	is	to	slow	it	down	even	further!	If
the	rate	of	output	decreases	further,	you’ve	found	the	limiting	bottleneck.	This	is	a	great	technique	for	digital	systems,
where	flow	rates	can	easily	be	adjusted	with	a	line	in	a	configuration	file	or	some	code	added	to	a	computer	program.

In	our	ornament	assembly	line,	Station	C	was	the	slowest	and	therefore	controlled	the	pace	of	throughput.	Therefore,	if
you	slowed	Station	C	down	even	further,	the	immediate	result	would	be	to	decrease	the	rate	that	ornaments	rolled	off
the	line.	Busted,	Station	C!

One	important	caveat	for	this	technique	is	to	choose	the	 smallest	possible	increment	when	adding	additional	sloth	to
the	suspected	node.	Remember,	in	a	single-track	system	any	node	can	become	the	controlling	bottleneck.	If	you	tip	the
scales	with	too	heavy	a	hand,	all	you’ll	learn	is	that	you	can	make	new	bottlenecks.	I	think	we	knew	that	already!

Get	Out	That	Stopwatch

Another	way	to	determine	the	location	of	a	bottleneck	is	to	send	a	tracking	probe	down	the	chain	and	time	its
progress.	In	our	painting	assembly	line,	that	would	mean	putting	an	ornament	in	the	queue	and	taking	note	of	when	it
enters	and	exits	each	of	the	stations.	Digital	systems	will	have	these	tools	available	in	software:	a	programmer	can	add
code	to	note	the	time	spent	in	various	functions,	making	database	calls,	etc.	Analog	or	digital,	having	precise	data	of
how	time	is	spent	in	the	system	is	invaluable.	That’s	because	there’s	another	possibility	we	haven’t	discussed:	two	or
more	identical	“narrowest”	bottlenecks!	In	our	painting	assembly	line,	if	all	three	stations	(A,	B,	and	C)	took	20	minutes
to	complete	their	work,	you’d	need	to	speed	up	all	of	them	to	achieve	a	faster	system.

Half-splitting	To	Find	The	Bottleneck

Ideally,	you’d	have	timing	data	on	every	node	in	a	system	so	that	there	would	be	no	mystery	as	to	the	location	of	the
bottleneck.	However,	there	will	be	times	when	collecting	such	data	will	come	at	too	high	a	price:	either	the	probe	will
be	hard	to	track	as	it	moves	through	the	system,	access	may	be	limited,	or	it	just	requires	a	lot	of	manual	labor.

What	if	you	could	only	collect	one	data	point	at	a	time?	What	would	give	you	the	most	bang	for	your	buck?	Ding,
ding,	ding!	You’re	right:	we	can	half-split	our	way	to	finding	the	bottleneck	and	save	a	lot	of	effort.	We	reviewed	half-
splitting	in	detail	in	“Clear	Up	To	Here”:	remember	the	teddy	bear	assembly	line?	Let’s	use	that	example	again,	but	this
time	in	the	context	of	a	slowdown.	Imagine	that	a	bear	normally	completes	the	trip	from	“naked”	to	“Christmas
fabulous,”	passing	through	all	45	assembly	line	stations,	in	about	15	minutes	(an	average	of	~20	seconds	per	station).
However,	today	it’s	taking	60	minutes	for	a	bear	to	emerge	from	the	line.	I	smell	a	bottleneck.

We’ll	start	by	dividing	the	system	in	two	and	then	collecting	data	at	the	mid-point	(again,	Station	#23).	We’ll	mark	a
special	test	bear	with	a	big	red	“Test”	across	its	face	to	distinguish	it	from	the	rest,	and	then	we’ll	send	it	on	down	the

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 201

https://artoftroubleshooting.com/2013/04/25/clear-up-to-here/

line.	Opening	up	the	access	hatch	over	Station	#23,	we’ll	wait	for	our	test	bear	to	pass	the	mid-point,	noting	the	time
when	it	crosses	(in	addition	to	the	starting	and	ending	times):

Diagram:	using	half-splitting	with	time	measurements	to	pinpoint	a	bottleneck.	The	time	is	noted	at	the
beginning,	middle,	and	end.

(image:	©	Jason	Maxham)

These	are	the	timings	we	get:

Station
Location Time	Elapsed

Start 00:00

#23 00:48

End 01:00

You	can	see	that	it	took	48	minutes	for	the	test	bear	to	reach	Station	#23.	That	means	the	time	it	takes	to	go	through	the

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 202

first	half	of	the	line	(48	minutes)	is	4	times	longer	than	the	second	half	(12	minutes)!	This	is	a	very	strong	indication	that
the	bottleneck	is	located	between	Stations	#1-23.	Just	like	before,	we	can	continue	half-splitting	until	we’ve	narrowed
it	down	further.	If	that	was	necessary,	the	next	step	would	be	to	send	another	test	bear	down	the	line	and	take	a	reading
at	Station	#12.	But,	maybe	the	first	split	is	good	enough	to	jump-start	an	investigation.	Remember,	half-splitting	is	a
very	efficient	way	of	eliminating	possibilities.	Let’s	say,	based	on	other	evidence,	you	had	a	solid	list	of	three	suspects:
Stations	#12,	#30,	and	#40.	The	timings	from	our	initial	split	indicate	the	bottleneck	is	in	the	first	half	of	the	assembly
line,	thereby	eliminating	#30	and	#40.	At	that	point,	I	wouldn’t	split	further,	and	instead	head	right	to	Station	#12.

Make	It	Go	Faster

I’ve	spilled	a	lot	of	ink	talking	about	how	bottlenecks	work	and	how	to	find	them.	Of	course,	there’s	that	last	step:
making	the	system	as	a	whole	go	faster.	If	you	find	that	the	narrowest	of	narrows	is	the	result	of	a	malfunction,	then	it’s
just	a	matter	of	making	the	correct	repair.	However,	another	possibility	is	that	the	system	is	now	being	asked	to	do
something	that’s	beyond	its	capability	or	capacity.	Or,	the	system	can	be	performing	exactly	as	intended:	some
machines	are	designed	to	slow	down	under	certain	types	of	workloads.	Rectifying	these	scenarios	can	be	much	harder.
Basically,	your	options	for	the	bottlenecked	node	are:

1.	 Make	it	go	faster.
2.	 Make	it	do	less.
3.	 Stockpile.
4.	 Parallelize.

The	first	one	is	self-explanatory:	zoom	zoom!	As	for	number	2,	“doing	less”	can	mean	any	number	of	optimizations,
but	the	basic	idea	is	that	scrutiny	will	often	reveal	unnecessary	work	being	done	by	the	bottlenecked	node.	Stockpiling
means	running	the	bottlenecked	system	more	(perhaps	even	24/7/365)	and	storing	its	output	to	smooth	out	swings	in
demand.	Unfortunately,	this	entails	inventory	and	storage	costs,	and	doesn’t	help	systems	that	must	do	“on-demand”
work.	Parallelizing	is	where	you	deploy	multiple	systems	to	simultaneously	handle	the	workload	of	the	bottlenecked
node.	Like	widening	a	one-lane	road,	this	means	work	can	be	performed	in	parallel	along	multiple	pathways.	In	our
painting	assembly	line,	drying	was	our	bottleneck.	To	double	the	speed	of	that	task,	we	could	add	a	second	drying
station:

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 203

Diagram:	parallelizing	the	Christmas	Tree	ornament	painting	line	with	dual	dryers.
(image:	©	Jason	Maxham)

This	is	the	kind	of	thing	that’s	very	easy	to	mock	up	in	PowerPoint,	but	much	harder	to	actually	pull	off	in	a	working
factory.	Removing	bottlenecks	with	parallelization	to	meet	growing	demand	can	be	a	golden	ticket	or	your	worst
nightmare.	When	it	comes	to	scaling,	some	companies	make	it,	and	some	don’t.	Finally,	remember	that	optimizing
bottlenecks	is	like	a	game	of	Whac-A-Mole:	speeding	up	one	part	of	a	system	will	make	some	other	part	the	slowest.
Once	you’ve	dispatched	a	particular	bottleneck,	another	one	will	appear!	With	Whac-A-Mole,	you	stop	when	the
game	is	over.	With	bottlenecks,	you	stop	when	your	company	is	wildly	profitable.

Things	Need	To	Be	Just	Right

Then	Goldilocks	went	upstairs	into	the	bedchamber	in	which	the	three	Bears	slept.	And	first	she	lay	down	upon
the	bed	of	the	Great,	Huge	Bear;	but	that	was	too	high	at	the	head	for	her.	And	next	she	lay	down	upon	the	bed	of
the	Middle	Bear;	and	that	was	too	high	at	the	foot	for	her.	And	then	she	lay	down	upon	the	bed	of	the	Little,
Small,	Wee	Bear;	and	that	was	neither	too	high	at	the	head,	nor	at	the	foot,	but	just	right.	So	she	covered	herself
up	comfortably,	and	lay	there	till	she	fell	fast	asleep.

The	Annotated	Classic	Fairy	Tales	1

After	you’ve	fixed	your	fair	share	of	bottlenecks,	you	might	achieve	that	rare	honor	of	making	something	go	 too	fast.
Your	record-setting	innovation	may	flood	downstream	nodes	with	an	excessive	amount	of	work.	That’s	happened	to
me:	I’ve	released	bottlenecks	that	were	actually	protecting	the	system	with	their	sluggish	ways.	When	that	happens,

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 204

http://www.svpg.com/engineering-wants-to-rewrite/
http://highscalability.com/blog/2007/11/13/friendster-lost-lead-because-of-a-failure-to-scale.html
http://en.wikipedia.org/wiki/Whac-A-Mole

you’ll	need	to	install	governors	to	return	the	flow	rate	back	to	a	level	that	can	be	sustained.	Tuning	involves	fixing
things	that	are	too	slow,	as	well	as	too	fast.	The	best	of	luck	as	you	work	to	get	things	just	right.

References:

Header	image:	Road	construction	delays	traffic	on	West	Side	Highway,	at	79th	Street,	New	York	City,	during	rush
hour.	World	Telegram	photo	by	Al	Ravenna.	New	York,	1951.	[Photograph]	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/94505641/.
1	Maria	Tatar,	The	Annotated	Classic	Fairy	Tales,	(New	York:	W.	W.	Norton	&	Company,	2002),	pg.	249.

Bottlenecks	was	originally	published	May	7,	2013.

Notes:

Bottlenecks	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 205

https://www.loc.gov/item/94505641/

How	Is	It	Supposed	To	Work?

I	read	a	surprising	amount	of	the	manual...	There’s	always	a	detail	I	overlooked,	a	switch	I	missed,	or	something	I
didn’t	get	quite	right.

Karl	Kuehn

A	breakdown	is	a	deviation	from	a	machine’s	operational	state;	the	process	of	fixing	something	involves	moving	from
that	broken	state	back	to	the	ideal	one.	What	is	the	ideal	state?	Well,	you	definitely	know	it	by	the	desired	outcome:	to
have	the	machine	perform	like	it	did	before	the	failure,	to	carry	on	doing	useful	work.	However,	that’s	a	far	cry	from
being	able	to	describe	what	should	be	happening	inside	a	system	to	realize	that	goal.	Understanding	a	machine	on	this
level	makes	comparing	“broken”	and	“working”	possible—the	difference	between	the	two	will	point	the	way	to	the
appropriate	remedy.	Knowing	how	a	system	works	is	like	having	a	map	and	compass	for	your	repair:	“broken”	is
where	you	are	and	“working”	is	where	you	want	to	go.

How	Is	It	Supposed	To	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 206

Heading	in	the	right	direction?
(image:	airguy1988	/	CC	BY-ND	2.0)

Where	Am	I?

Before	we	get	into	a	discussion	of	moving	towards	a	machine’s	ideal	state,	we	should	dwell	on	the	importance	of
knowing	its	current	state.	You	may	say	it’s	“broken,”	but	that’s	not	very	specific.	Sticking	with	our	map	analogy,	point-
to-point	navigation	requires	knowing	both	your	current	location	and	the	desired	destination.	A	heading	is	relative	to
where	you	are	right	now.	If	you	want	to	get	to	San	Francisco	and	you	are	in	Los	Angeles,	you	go	north;	if	you’re	in
Seattle	and	you	want	to	get	to	Frisco,	then	you	need	to	head	south.

However,	imagine	being	blindfolded	and	dropped	off	in	the	middle	of	a	forest.	From	this	unknown	starting	point,	it’s
not	enough	to	know	that	your	destination	is	San	Francisco.	Which	way	is	it?	You	wouldn’t	know,	so	your	first	order	of
business	would	be	to	answer	the	question	“Where	am	I?”	Don’t	worry,	unlike	some	fraternities,	being	blindfolded	and
finding	your	way	home	from	a	strange	place	isn’t	required	to	join	the	Troubleshooters	Guild.	Unless	you	want	to…it
sounds	like	a	great	way	to	build	some	character,	and	everyone	needs	at	least	one	good	cocktail	party	story.

Discovering	the	current	state	of	a	system	is	a	common	thread	that	winds	through	many	of	the	strategies	in	 The	Art	Of
Troubleshooting.	Therefore,	I’ll	just	briefly	review	some	of	the	best	tactics:

Inspect:	use	your	eyes,	ears,	and	nose.
Indicator	Lights/Error	Messages:	when	the	machine	is	trying	to	tell	you	what’s	wrong	(its	current	status),	please	pay
attention.
Built-in	Diagnostics:	can	you	ask	the	machine	how	it’s	day	is	going?
Gauges/Probes:	some	machines	come	with	gauges	to	tell	you	the	state	of	various	internal	parameters.	If	you’ve
embarked	on	your	own	data	collection	project,	then	maybe	you’re	added	your	own.	Either	way,	check	these	out.
Logs/Records:	for	digital	devices,	there	is	typically	a	place	where	the	system	will	record	its	goings-on.	For
mechanical	machines,	the	logs	may	be	analog,	but	they’re	just	as	useful.	It	would	be	a	shame	if	someone	had
already	noted	the	problem	you’re	experiencing	and	you	wasted	your	time	duplicating	their	efforts.

In	addition	to	these	ideas,	there’s	a	very	useful	method	from	the	medical	profession	called	a	 “review	of	systems.”	In	a
review	of	systems,	a	doctor	goes	from	head	to	toe,	asking	you	about	each	part	of	your	body.	Is	your	eyesight	good?	Do
you	have	any	trouble	hearing?	Any	digestion	problems?	The	goal	is	to	solicit	information	about	any	recent	changes	or
troubling	conditions	systematically.	Going	over	the	body	in	this	way	ensures	that	no	important	detail	is	missed.

In	the	same	way,	you	can	add	a	review	of	systems	to	your	troubleshooting	routine.	If	you’re	 thorough,	it	really	is	the
ultimate	way	to	know	the	“current	state.”	Your	review	can	cover	a	specific	machine	or	an	entire	factory.	Whenever	we

How	Is	It	Supposed	To	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 207

http://www.flickr.com/photos/airguy1988/6320419567/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.sfgate.com/entertainment/article/Frisco-that-once-verboten-term-for-the-city-by-2582886.php
https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
http://www.youtube.com/watch?v=NMwB5uIWOOI

had	a	customer	complaint	at	Discovery	Mining,	I	would	divide	my	team	up	and	do	a	brief	review	of	systems.	There
were	several	major	components	powering	our	web	site,	each	of	which	could	be	the	source	of	trouble:	the	network,	the
database,	our	Internet	connection,	the	web	servers,	etc.	Whenever	resources	allowed,	I	always	liked	to	check	in	with
each	of	these	parts	and	make	sure	they	were	operating	within	acceptable	limits.	When	my	obsession	with	data
collection	finally	began	to	bear	fruit,	these	review	of	systems	became	very	easy	for	my	team.	Each	subsystem	had	its
own	set	of	easily-accessible,	continuously	updated	graphs	that	made	a	full	inspection	possible	within	just	a	few
minutes.

Excerpt:	example	of	a	“Description	and	Operation”	section	in	a	manufacturer’s	product	manual.
(source:	Edwards	Signaling,	Installation	Instructions	for	Adaptatone	Millennium	Tone	Generator	Series	5540M-485″)

Description	And	Operation

If	you	happen	to	be	the	designer	of	a	system,	then	you	should	know	how	it’s	supposed	to	work.	However,	in	our	world
of	mass-produced	goods,	it’s	rare	that	a	machine	was	crafted	by	your	own	two	hands.	But,	you’re	in	luck	because	the
manufacturer	will	often	provide	you	with	a	metaphorical	map	and	compass.	Among	these	resources,	you’ll	find
manuals,	schematics,	blueprints,	service	bulletins,	troubleshooting	trees,	and	how-tos.	These	materials	should	be
consulted	first:	the	complexity	of	some	of	today’s	machines	is	astounding	and	so	the	knowledge	of	the	people	who
were	responsible	for	their	design	is	indispensable.	Years	of	careful	thought	may	have	gone	into	a	product’s	evolution,
leading	to	counter-intuitive	engineering	tradeoffs	that	are	difficult	to	understand	without	the	same	context	as	the
original	designer.	Don’t	be	surprised	by	these	things,	when	instead	you	could	be	informed	of	them	in	advance.

Some	industries	are	better	than	others	when	it	comes	to	providing	the	details	of	“how	it	should	work.”	I	find	the
automotive	industry	to	be	particularly	rich	in	documentation:	I’ve	looked	at	auto	shop	manuals	and	the	level	of
description	provided	for	even	the	smallest	components	can	be	impressive.	Cars	are	expensive	and	important,	so	the
professional	troubleshooting	industry	that	serves	automobile	owners	is	generally	well	equipped.	In	other	contexts,
manufacturer	resources	can	be	scant.	Back	when	I	was	building	computers,	I	purchased	many	parts	that	came	with
only	a	sentence	or	two	regarding	normal	operation,	usually	on	a	blurry	photocopy	that	was	barely	legible.	In	these

How	Is	It	Supposed	To	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 208

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
http://www.edwards-signals.com/files/i-5540m-485.pdf

cases,	you	may	need	to	contact	the	manufacturer’s	service	department	to	get	the	necessary	details	to	help	you
troubleshoot.

The	last	option,	the	hardest,	is	figuring	out	how	something	is	supposed	to	work	with	just	the	machine	as	your	source	of
information.	Results	will	vary	greatly,	depending	on	how	complicated	the	machine	is	and	your	level	of	expertise.
Given	enough	resources	(primarily	time),	every	machine	can	be	reverse	engineered.	Those	engaged	in	historical
restorations	(e.g.,	classic	cars)	or	those	who	are	tasked	with	maintaining	very	old	systems	will	eventually	have	to	resort
to	the	intelligent	guesswork	of	trial	and	error.	In	“Duplicate	The	Problem,”	I	noted	how	the	fix-it	knowledge	of	mass-
produced	systems	decays	over	time:	documentation	is	lost,	manufacturers	go	out	of	business,	and	human	know-how
withers	as	whole	industries	are	upended	in	the	creative	destruction	of	capitalism.	When	that	happens,	you’ll	need	to	fill
in	the	gaps	by	yourself.

Finally,	we	should	take	a	moment	and	recognize	the	invaluable	role	that	education	plays	in	understanding	how	“it’s
supposed	to	work.”	In	my	interviews	with	great	troubleshooters,	many	of	them	cited	reading	manuals	and	taking
classes	as	the	foundation	of	their	skills.	This	“general	education”	is	an	essential	building	block	to	understanding	the
systems	under	your	care,	even	if	most	of	what	you	learn	isn’t	applicable	immediately.	Can	you	really	say	you’re
prepared	to	help	without	self-study	or	formal	education?	Rich	Kral,	a	veteran	HVAC	repairman,	would	say	otherwise:

“I	think	when	you	first	get	into	a	trade,	you	need	to	read	the	manual	completely.	After	awhile,	you	can	get	to	the
point	where	you	scan	it…	But	I	do	believe	that	if	you	want	to	take	care	of	a	piece	of	machinery	for	a	customer,
you	should	know	how	it	works.	Don’t	wait	until	you	get	a	service	call	and	someone	wants	their	air	conditioning
fixed	and	you’re	sitting	up	there	[on	the	roof]	reading	the	book.”

Rich	Kral

Expectations	Versus	Normal	Operation

How	something	should	work	is	not	just	about	schematics	and	manuals,	it	can	also	be	a	matter	of	 expectations.
Whenever	you	interact	with	a	new	machine,	you	draw	upon	all	your	previous	experiences,	leveraging	your
assumptions	for	how	it	ought	to	function.	These	assumptions	are	very	useful:	after	you	learn	how	to	drive	a	particular
car,	you	can	use	that	experience	to	help	you	drive	any	car.	However,	not	all	machines	are	created	equal:	how	one
works	may	not	carry	over	to	others	in	its	class.

Sometimes,	a	repair	is	just	figuring	out	the	difference	between	someone’s	expectations	and	how	a	machine	was
designed	to	work.	A	great	example	of	this	came	up	in	one	of	the	interviews	I	conducted	for	The	Art	Of
Troubleshooting.	Seasoned	auto	mechanic	Dan	McCormick	related	this	encounter	with	a	customer:

You	have	to	know	the	system.	We	had	a	person	come	in	and	say,	“I	was	driving	down	the	road	and	the	car	starts
chiming!”	I	had	to	think	about	that	for	a	while…the	car’s	chiming?!	Did	you	have	the	direction	light	on?	He	says,
“No.”	Are	you	sure	you	didn’t	have	the	direction	light	on?	“Well,	I	don’t	think	so.”	That	was	one	of	the	features	of
this	particular	car:	if	you	left	the	direction	light	on	for	more	than	3/10	of	a	mile,	the	computer	would	pick	it	up
and	start	chiming	to	let	you	know	you	left	it	on.	The	customer	went	for	a	drive,	intentionally	leaving	the	direction
light	on,	and	it	chimed	the	same	way.	He	came	back	and	admitted	that’s	what	was	happening!	You	see,	a
problem	to	him	was	actually	just	normal	operation.

Dan	McCormick

This	story	resonates	with	me:	many	times	I’ve	been	called	in	to	“fix”	things	that	weren’t	broken.	The	“repair”	was
simply	to	align	someone’s	expectations	with	the	ways	of	the	machine.	Attentive	listening,	combined	with	system
knowledge,	can	save	a	lot	of	time	and	prevent	you	from	searching	for	problems	that	don’t	exist.	Once	again,	the	mind
is	mightier	than	the	wrench.

References:

Header	image:	“Camera	Parts”.	Shane	Aldendorff,	photographer.	Retrieved	from	Unsplash,

How	Is	It	Supposed	To	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 209

http://en.wikipedia.org/wiki/Reverse_engineering
https://artoftroubleshooting.com/2011/12/13/duplicate-the-problem/
https://artoftroubleshooting.com/2011/11/01/listen-up/

https://unsplash.com/photos/mQHEgroKw2k.

How	Is	It	Supposed	To	Work? 	was	originally	published	May	17,	2013.

Notes:

How	Is	It	Supposed	To	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 210

https://unsplash.com/photos/mQHEgroKw2k

Repair	Or	Replace?

All	economic	activity	is	based	upon	an	uncertain	future.	It	is	therefore	bound	up	with	risk.

Ludwig	von	Mises

As	the	economist	Ludwig	von	Mises	once	said,	human	action	is	“purposeful	behavior.” 1	Machines	amplify	our	actions
and	are	employed	purposefully,	to	satisfy	a	specific	want.	When	a	machine	breaks	down,	the	need	it	was	fulfilling
persists—this	is	the	driving	force	behind	every	repair.	Therefore,	every	troubleshooting	project	has	the	following	3
elements:	a	need,	a	broken	system,	and	a	finite	supply	of	repair	resources.	That	basic	setup	leads	to	the	following
options:

1.	 Repair	the	system
2.	 Replace	the	system
3.	 Upgrade	or	downgrade	the	system

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 211

“I	wanted	a	new	one	anyway.”
(image:	Smithsonian	Institution)

In	all	endeavors,	we	want	to	fulfill	our	desires	in	the	most	efficient	way	possible:	the	resources	we	save	can	be	put	to
other	uses.	The	need	a	broken	machine	was	serving	is	the	most	important	consideration:	if	it	can	be	met	at	a	lower	cost
some	other	way,	fixing	becomes	unnecessary.	If	the	need	is	still	present,	but	has	grown	or	diminished,	then	upgrading
or	downgrading	should	be	on	the	table.

As	a	troubleshooter,	you	will	always	be	thrown	into	the	middle	of	the	“repair	vs.	replace”	dilemma.	The	cost	of	your
efforts	to	find	the	problem	and	execute	the	proper	fix	can	tip	the	balance	in	favor	of	either	“repair”	or	“replace.”
Therefore,	it’s	vital	that	you	understand	the	economics	involved	and	your	role	in	the	process.	Also,	the	ability	to
competently	counsel	your	customers	on	this	critical	question	builds	trust	and	leads	to	the	kind	of	long-lasting	business
relationships	that	you	want	to	cultivate.

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 212

http://www.flickr.com/photos/smithsonian/2550351665/

Let’s	have	an	assembly	contest.	It’s	you	versus	the	manufacturer.	Go!
(image:	Chrysler	Parts	Catalog,	1960)

The	Troubleshooter	As	Manufacturer

The	greatest	improvement	in	the	productive	powers	of	labour,	and	the	greater	part	of	the	skill,	dexterity,	and
judgment	with	which	it	is	anywhere	directed,	or	applied,	seem	to	have	been	the	effects	of	the	division	of	labour.

Adam	Smith,	Wealth	of	Nations	2

I	want	you	to	conduct	a	little	thought	experiment:	imagine	all	the	pieces	of	an	automobile,	strewn	across	the	floor	of	a
garage.	Your	task	is	to	assemble	these	parts	into	a	working	car.	To	make	things	interesting,	we’ll	have	a	contest:	if	you
can	do	it	faster	than	the	manufacturer	did	it,	you	get	to	keep	the	car.	Go!

Not	interested?	This	thought	experiment	is	useful	because	it	highlights	one	of	major	differences	between	“repairing”
and	“replacing.”	If	we	go	back	to	my	Universal	Troubleshooting	Recipe,	you’ll	recall	that	there	are	two	steps	for
making	any	repair:

1.	 Find	the	problem.
2.	 Fix	it.

The	second	step,	fixing	something,	is	a	recreation	of	the	manufacturing	process.	Getting	a	machine	back	to
working,	you	tread	the	same	steps	that	were	done	at	the	factory. 	The	troubleshooter’s	role	as	a	de	facto	manufacturer
becomes	clearer	when	you	think	about	how	many	times	a	machine	can	be	re-built	over	its	lifetime.	An	analogy	might
be	useful:	you	may	have	heard	the	myth	that	“every	cell	in	your	body	is	replaced	every	7	years.”	There’s	a	kernel	of
truth	to	this:	certain	types	of	cells	are	being	continually	replaced.	Dr.	Jonas	Frisen,	a	stem	cell	researcher	at	the
Karolinska	Institute	in	Stockholm,	believes	that	the	average	age	of	your	cells	is	between	7	and	10	years	(some	cells,	like
the	neurons	in	the	cerebral	cortex	in	your	brain,	are	never	replaced).	The	human	body	is	similar	to	many	machines	in
this	respect:	some	parts	bear	the	brunt	of	wear	and	tear	and	must	be	frequently	replaced	(like	the	tires	on	a	car).	Other
parts	can	last	the	entire	lifetime	of	the	machine:	the	engine	on	a	modern	automobile,	when	properly	maintained,

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 213

http://www.imperialclub.com/Repair/Transmission/1960Parts/
https://artoftroubleshooting.com/2013/03/30/one-size-doesnt-fit-all/
http://www.nytimes.com/2005/08/02/science/02cell.html

can	easily	be	driven	beyond	1	million	miles.	Over	the	long	run,	all	parts	must	be	replaced:	you	could	maintain	(i.e.,
continually	rebuild)	a	machine	indefinitely	if	you	had	an	infinite	supply	of	all	the	necessary	components	and	the	know-
how	to	install	them.

The	problem	is,	the	manufacturer	will	always	be	better	at	putting	together	machines.	That’s	the	whole	point	of	their
existence:	to	efficiently	turn	raw	materials	into	finished	products!	To	that	end,	they	have	all	kinds	of	advantages	over
you	in	your	role	as	a	troubleshooter.	Let’s	start	with	the	inputs:	a	manufacturer	strives	to	find	the	most	efficient	way	to
source	the	raw	materials	it	uses,	forming	relationships	with	suppliers	to	acquire	materials	in	bulk.	You	can	attempt	the
same,	but	buying	parts	by	the	thousands	or	millions	and	getting	the	associated	savings	won’t	realistically	be	an	option.
Whereas	manufacturers	purchase	components	in	large	quantities,	to	fix	something	you	usually	need	only	one	of	a	part
(or	just	a	few).	Therefore,	on	average,	the	troubleshooter’s	cost	of	materials	is	going	to	be	higher.

When	it	comes	to	how	labor	is	used,	the	troubleshooter	is	a	jack-of-all-trades:	wherever	the	problem	lies	within	the
machine,	you	must	go	there	and	be	prepared	to	fix	it.	Contrast	that	with	the	highly	specialized	labor	used	in
manufacturing,	it’s	rare	for	a	machine	to	be	built	by	a	single	person	anymore.	In	general,	the	troubleshooter	must	know
much	more	about	a	machine	than	the	individual	workers	in	an	assembly	line.	However,	that	knowledge	will	be
shallow	compared	to	the	deep	expertise	of	a	worker	who	performs	the	same	operation,	day	in	and	day	out,	on	a
specific	part	of	a	machine.	That’s	one	of	the	advantages	of	assembly-line	production:	each	worker	becomes	highly
proficient	at	their	individual	task	versus	the	“artisanal”	approach	where	one	person	builds	something	from	start	to
finish.

Think	about	just	a	simple	operation,	like	placing	a	tire	on	a	car.	Done	by	the	side	of	a	road,	this	involves	a	jack,	a	tire
iron,	and	some	grunting	(or	maybe	that	was	swearing	I	heard…?).	Done	in	a	high-tech	factory,	the	car	is	already	off	the
ground,	perhaps	the	wheel	is	automatically	lifted	into	the	perfect	position	with	a	crane,	while	the	nuts	are	tightened
down	with	a	pneumatic	wrench	in	a	fraction	of	a	second.	Even	for	the	most	proficient	troubleshooter,	the	amount	of
time	spent	on	even	this	simple	task	is	going	to	be	orders	of	magnitude	longer	versus	the	time	it	took	at	the	factory.

A	manufacturing	environment	is	designed	to	be	entirely	predictable.	Creativity	may	be	an	asset	for	the	person	who
dreams	up	a	“better	mousetrap”	and	for	those	who	discover,	for	the	first	time,	how	to	efficiently	produce	it.	Churning
out	carbon	copies,	however,	favors	conformity:	manufacturers	strive	to	create	processes	that	are	so	straightforward	and
routine	that	unskilled	labor	can	be	used	for	the	majority	of	the	tasks.	Contrast	that	with	the	skill	required	to	pull	off	a
complicated	repair:	malfunctions	are	usually	anything	but	“routine”	and	the	amount	of	knowledge	required	to	point
yourself	towards	the	correct	fix	can	be	formidable.	Therefore,	a	troubleshooter’s	know-how	requires	a	combination	of
product	design	and	assembly	skills.	That	blending	of	talents	is	harder	to	locate	in	a	single	person.

To	add	to	the	manufacturer’s	advantage,	fixing	something	often	requires	disassembly.	That	means	first	reversing	what
was	done	at	the	factory,	and	then	replicating	the	manufacturing	process	from	that	point.	That’s	a	double	whammy	in
terms	of	efficiency.	Piling	on	top	of	that,	we	return	to	Step	#1	in	the	Universal	Recipe:	you	need	to	initially	find	out
where	the	problem	lies.	Resources	like	The	Art	Of	Troubleshooting	aim	to	make	problem	discovery	more	efficient,	but
the	fact	remains	that	this	is	a	step	the	manufacturer	doesn’t	have	to	take.	Of	course,	manufacturers	also	have	to
discover	and	overcome	problems	with	their	products,	but	they	usually	do	this	up-front	in	the	prototyping	and	testing
phases.	Once	a	product’s	design	is	set,	manufacturing	is	about	efficiently	replicating	that	model,	over	and	over.

So	what?	Well,	the	difference	in	efficiency	between	the	troubleshooter	and	the	manufacturer	looms	large	in	the	“repair
versus	replace”	question.	The	only	hope	for	troubleshooting	to	be	economically	advantageous	is	to	use	a	small
fraction	of	the	labor	and	parts	that	went	into	the	original	machine.	Because	the	cost	of	replacement	is	always	the
standard	to	beat,	the	basic	equation	for	an	efficient	troubleshooting	exercise	is:

Cost	of	Discovery	+	Cost	to	Fix	<	Cost	of	Equivalent	Replacement

All	things	being	equal,	the	cost	of	finding	the	problem	and	making	the	repair	must	be	kept	below	the	cost	of
replacement.	We’ll	delve	into	all	the	nuances	below,	but	this	basic	accounting	is	the	starting	point	for	our	discussion.
In	addition	to	this	calculation,	there	are	many	other	relevant	factors,	some	of	which	are	difficult	to	quantify	with
numbers.	Finally,	note	that	this	is	a	forward-looking	equation:	it	doesn’t	matter	how	much	you’ve	previously	spent	on	a
machine	(aka,	“sunk	costs”	which	cannot	be	recovered).	I’m	often	surprised	at	how	brutal	depreciation	can	be	to	a
machine’s	value!	You	can’t	be	emotionally	attached	to	what	you	spent	on	it	when	it	was	new:	the	only	relevant
consideration	is	the	current	replacement	cost.

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 214

http://www.cbsnews.com/8301-201_162-57468422/n.y-mans-volvo-nears-3-million-mile-mark/
http://en.wikipedia.org/wiki/Sunk_costs

Once	this	thing	is	launched	into	space,	repair	becomes	a	touchy	subject.
(image:	SDASM	Archives)

Repair

In	the	“repair	vs.	replace”	matchup,	you’ll	notice	that	repairing	has	 two	separate	costs:

1.	 Problem	discovery
2.	 Executing	the	fix	(includes	parts	and	labor)

The	first	component,	figuring	out	what	is	wrong,	can	be	highly	variable.	For	low-value	items,	it’s	entirely	possible	to
exceed	the	replacement	value	of	the	item	solely	in	the	problem	discovery	phase.	This	is	a	good	time	to	talk	about	risk,
because	repair	typically	involves	many	more	unknowns	than	replacing.	In	addition	to	the	risk	that	you	waste	a	lot	of
resources	just	figuring	out	what’s	wrong,	executing	a	fix	has	its	own	hazards.	Whenever	you	take	something	apart,
there’s	always	a	chance	you	won’t	be	able	to	put	it	back	together	again.	Certain	repair	operations	may	require	a	very
long	series	of	steps	to	be	implemented	perfectly.	It’s	also	easy	to	waste	money	on	parts:	I’ve	botched	repair	jobs	and
been	left	with	a	pile	of	replacement	parts	that	couldn’t	be	used	(many	times,	even	if	you	can	return	the	parts,	you	must

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 215

http://www.flickr.com/photos/sdasmarchives/6996840630/

pay	a	restocking	fee).	I’ve	also	installed	replacement	parts	incorrectly	and	destroyed	them	in	the	process.	Oops,	there
goes	good	money	down	the	drain!

All	of	the	above	risks	can	be	mitigated.	Skill	and	experience	can	reduce	the	time	needed	to	discover	problems,	aid	in
the	execution	of	difficult	repairs,	and	prevent	the	waste	of	materials	like	replacement	parts.	However,	the	above	risks
will	still	be	present	and	can	rear	their	ugly	heads	at	any	moment.	Repair	involves	many	elements	of	uncertainty,	which
are	similar	to	the	risks	faced	by	entrepreneurs	in	the	world	of	business.	Entrepreneurs	take	risks	with	capital	and	their
time,	in	hopes	of	turning	a	profit.	Troubleshooters	make	similar	bets	with	their	repairs,	chasing	wins	in	the	form	of
savings	versus	the	cost	of	replacement.

Apart	from	the	added	risk,	troubleshooting	does	have	one	big	advantage	versus	replacement:	the	knowledge	gained
from	investigating	an	issue	and	making	a	fix	can	be	re-used	later	on.	Once	you’ve	figured	out	the	root	cause	of	a
problem,	it	will	be	much	easier	to	recognize	and	handle	if	it	happens	again.	You	may	pay	a	large	up-front	cost	the	first
time	you	tackle	a	particular	issue,	but	that	investment	can	pay	dividends	later	on	if	the	problem	recurs.	Likewise	with
the	actual	fix,	you’ll	discover	shortcuts	and	tricks	that	will	speed	future	repairs.	Speaking	of	discovery,	you’ll	also	learn
invaluable	things	about	your	machines,	processes,	and	organization	when	you	troubleshoot:	these	nuggets	can	be	built
upon	with	any	number	of	“continuous	improvement”	paradigms.	Lastly,	it	might	not	have	economic	value,	but	there’s
also	the	soul-stirring	satisfaction	of	knowing	you	can	solve	your	own	problems.	Any	time	you	can	cultivate	an
independent	spirit	of	your	own,	grab	the	opportunity!

Shotgunning:	Replacing	Instead	Of	Discovering

As	we’ve	seen,	the	time	and	resources	required	to	pinpoint	the	cause	of	a	malfunction	can	easily	exceed	the	cost	of
replacing	a	broken	machine.	To	make	repair	more	efficient,	you	can	short	circuit	the	discovery	process	by	replacing
multiple	components	in	lieu	of	definitively	diagnosing	the	problem.	This	technique	is	called	“shotgunning”	and	evokes
the	blast	of	a	shotgun	shell,	which	sprays	pellets	onto	a	relatively	wide	target	area.	Following	the	analogy,	most
troubleshooting	is	like	sharpshooting:	you	try	to	put	a	single	bullet	right	on	the	center	of	the	target.	However,	the
precision	strategy	is	not	appealing	when	the	cost	of	discovery	is	relatively	high	and	the	cost	of	replacement	parts	is
relatively	low.	Shotgunning	aims	for	a	different	balance,	substituting	parts	for	labor,	with	the	aim	of	achieving	savings
versus	a	definitive	diagnosis	that	takes	a	lot	of	resources.

An	example:	you’re	repairing	a	TV	and	have	isolated	the	problem	down	to	three	possible	microchips.	The	cost	of	the
chips	is	trivial,	perhaps	just	a	few	dollars	each.	However,	figuring	out	which	one	is	causing	the	problem	would	take
hours	of	testing	with	the	aid	of	specialized	equipment	and	software.	Why	not	replace	them	serially,	paying	respect	to
the	core	principle	of	changing	just	one	thing	at	a	time,	so	that	you	know	which	one	is	the	culprit?	That’s	a	good
instinct,	but	there	are	circumstances	which	can	make	serial	replacement	uneconomic,	like	when	there	is	a	very	high
overhead	to	testing	a	fix.	Let’s	say	that,	on	this	particular	TV,	verifying	the	efficacy	of	any	repair	requires	running	a
lengthy	4-hour	diagnostic	check.	If	we	got	unlucky	and	the	failed	component	happened	to	be	the	third	one,	that	would
mean	spending	12	hours	running	tests!	Instead,	you	opt	to	replace	all	three	chips	simultaneously.	Doing	so,	you	avoid
both	the	cost	of	discovering	which	one	is	the	cause	and	the	potential	lengthy	overhead	of	the	multiple	tests	needed	for
serial	replacement.

Caveats:

Shotgunning	requires	the	use	known	good	components.	Make	sure	you	are	using	replacement	parts	that	have	been
verified	to	work.	Otherwise,	you	run	the	risk	of	turning	a	situation	with	one	failed	component	into	a	scenario	with
multiple	failed	components.
If	you	are	conducting	a	repair	for	a	third	party,	replacing	components	that	aren’t	technically	broken	may	bring	up
ethical	or	legal	issues.	The	aim	is	to	save	money,	so	most	people	will	be	on	board	with	the	overall	goal	of
shotgunning.	As	with	most	things,	problems	can	be	headed	off	with	transparency:	make	it	the	customer’s	choice	by
presenting	them	with	the	option	to	shotgun	and	let	them	make	the	final	decision.	After	all,	it’s	their	money!

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 216

https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/

Because	of	its	immense	size,	a	paper	machine	is	a	good	example	of	something	that’s	difficult	to	replace.
(image:	Lewis	Hine	/	The	U.S.	National	Archives)

Replace

The	argument	for	replacement	revolves	around	certainty.	As	noted,	repair	can	involve	a	good	deal	of	risk:	the	time
needed	to	discover	the	problem	can	be	highly	variable,	and	then	the	repair	must	also	be	executed	correctly.	Contrast
that	with	replacement:	by	purchasing	a	known	working	system,	you	can	completely	bypass	these	concerns.	To
guarantee	operation	within	a	certain	time	frame,	swapping	may	be	your	only	option,	given	the	uncertainties	associated
with	repair.

However,	replacement	isn’t	all	sunshine,	unicorns,	and	rainbows.	There	are	risks	and	downsides	here	too.	For
example,	a	replacement	machine	may	require	a	lengthy	break-in	period	to	become	fully	functional.	Extensive
configuration	or	tuning	might	be	needed	to	integrate	a	new	machine	into	your	operations.	Additionally,	that	old
machine	might	have	contained	“embedded	knowledge”	in	the	form	of	long-forgotten	customizations;	these	subtle
differences	often	won’t	become	apparent	until	you	start	testing	the	new	machine.	The	other	tricky	thing	about	finding	a
suitable	replacement	is	compatibility:	the	manufacturer	may	claim	that	a	new	machine	will	“run	just	like	the	old	one,”
but	I’ve	been	bit	enough	times	to	be	skeptical	of	such	claims!	Machines	can	be	like	wine	vintages,	just	because	it’s
newer	doesn’t	mean	it’s	better.	Mass-produced	machines	are	designed	to	appeal	to	the	masses.	While	this	is	great	for
the	manufacturer,	new	models	can	be	a	step	forwards	or	backwards	when	it	comes	to	your	specific	purpose.

The	last	thing	to	consider	when	replacing	a	machine	is	the	cost	of	installation:	if	a	machine	was	difficult	to	get	into
place,	it	will	likely	be	difficult	to	remove	and	install	something	else	in	its	stead.	On	the	extreme	end	of	this	is
something	like	a	paper	machine,	which	can	take	up	an	entire	warehouse-sized	building.	You’re	not	going	to	pick	up
something	like	that	and	swap	it	out	in	an	afternoon!

The	Need,	Reassessed	(Upgrading	And	Downgrading)

When	a	machine	isn’t	bothering	you,	it’s	easy	to	forget	about	the	need	that	led	to	its	acquisition.	When	it	goes	up	in
smoke,	your	knee-jerk	reaction	may	be	to	reach	for	your	wallet.	However,	before	you	lay	down	money	to	replace	or
repair	it,	go	back	to	that	original	need	and	see	if	it’s	still	present:	you	may	find	it	has	grown	or	shrunk.

Reassessing	the	purpose	served,	you	may	find	that	you’ve	overbuilt:	the	broken	machine	was	simply	too	large,	fast,	or
feature-rich	for	how	it	was	actually	being	used.	This	happens	to	me	all	the	time:	I’m	a	sucker	for	more	horsepower,
watts	per	channel,	lumens,	and	pixels.	I	often	find	myself	with	more	machine	than	I	need!	In	those
cases,	downgrading	to	a	smaller	capacity	machine	will	still	meet	the	need	and	save	you	money	in	the	process.	Less

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 217

http://www.flickr.com/photos/usnationalarchives/7494449750/
http://en.wikipedia.org/wiki/Paper_machine

capable	models	may	also	be	less	complex	and	therefore	increase	reliability:	bells	and	whistles	are	great	but	they	also
expand	the	number	of	things	that	can	go	wrong	with	a	machine.

The	other	possibility	is	that	the	machine	in	question	was	underserving	your	needs:	this	is	the	case
for	upgrading.	Maybe	it	was	a	bottleneck	in	your	workflow	and	limiting	the	throughput	of	your	business.	Perhaps	a
new	feature	can	save	you	a	lot	of	labor,	or	the	latest	models	use	less	energy	and	will	therefore	cost	less	to	operate.	This
is	all	great,	but	the	numbers	need	to	be	right:	make	sure	you	calculate	the	“return	on	investment	(ROI)”	to	ensure	the
additional	benefits	will	pay	for	themselves.	When	upgrading,	what	we’re	really	talking	about	is	“spending	money	to
make	money.”	This	is	exactly	what	entrepreneurs	do,	so	consider	yourself	an	honorary	member	of	that	club.

Technological	change	and	obsolescence	should	also	be	a	consideration	in	your	decision	to	upgrade.	The	older	a
machine	gets,	the	further	away	it	gets	from	that	sweet	spot	of	know-how	and	available	fix-it	resources	that	is	generated
when	a	large	segment	of	the	population	uses	a	particular	machine.	Sticking	with	the	“herd”	has	advantages:
maintaining	a	fleet	of	Ford	Model	T’s	was	(relatively)	easy	in	the	1910’s	and	1920’s.	Replacement	parts,	tools,
mechanics	who	knew	how	to	work	on	them,	and	the	availability	of	service	information	was	at	its	peak.	In	addition	to
the	fact	that	modern	cars	have	so	many	advantages	compared	to	the	venerable	Tin	Lizzie,	maintaining	a	fleet	of	Model
T’s	today	would	be	frustrating	because	the	herd	has	moved	on	to	greener	pastures.

Beware,	upgrading	can	mean	an	increase	in	the	use	of	consumable	inputs.	Whatever	your	machine	is	used	to	eating,
after	upgrading	it	will	be	even	hungrier!	Increased	energy	consumption	is	common	after	an	upgrade.	Again,	will	the
cost	of	these	additional	expenses	be	worth	it?	Make	sure	to	plan	ahead	and	verify	that	your	infrastructure	can	handle
the	increased	load—upgrading	your	equipment	when	you’re	already	maxed	out	is	a	recipe	for	trouble.	Likewise,
downgrading	usually	means	using	less.	If	the	previous	machine	had	lots	of	excess	capacity,	the	savings	from	a
downgrade	can	add	to	your	bottom	line	(e.g.,	a	lower	energy	bill).

You	may	discover	that	you	didn’t	build	it	big	enough	the	first	time…
(image:	Caroline	Gagné	/	CC	BY	2.0)

Repair	AND	Replace

Possibilities	for	repair	lie	along	a	spectrum:	from	a	quick	fix	that	might	only	last	a	few	minutes,	all	the	way	to	a
beautiful	titanium-encased	refurbishing	that	extends	the	life	of	a	machine	far	beyond	the	original	design.	Faced	with	an
emergency	situation,	you	may	even	have	to	contemplate	fixes	that	lessen	the	life	of	a	machine	or	part.	For	example,
should	you	have	a	flat	tire,	you	can	use	a	fast-acting	spray	sealant	that	fills	the	leak	from	the	inside.	However,	a
tradeoff	for	some	of	these	products	is	that	their	use	will	eventually	destroy	your	tire.	Therefore,	repair	or	replace	isn’t
either-or.	A	combination	of	the	two	might	be	the	best	answer,	with	repair	pursued	now	and	replacement	in	the

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 218

https://artoftroubleshooting.com/2013/05/06/bottlenecks/
http://en.wikipedia.org/wiki/Return_on_Investment
http://en.wikipedia.org/wiki/Ford_Model_T
http://www.flickr.com/photos/carolinegagne/4250150950/
http://creativecommons.org/licenses/by/2.0/deed.en
http://www.businessfleet.com/article/print/story/2012/03/where-s-my-spare-tire.aspx

medium	or	long-term.

Used	vs	New

“Used	or	new?”	This	is	a	question	for	replacement,	but	also	for	repairs	as	parts	can	be	obtained	second-hand.	The
usual	tradeoff	is	that	new	things	will	incur	fewer	maintenance-related	expenses.	The	reason	for	this	is	because	the
normal	wear	and	tear	that	degrades	components	(and	leads	to	malfunctions)	hasn’t	happened	yet.	With	a	new	machine
or	part,	statistically	you’ve	got	more	time	between	deployment	and	that	first	malfunction.	The	other	reason	why	new
things	have	fewer	expenses	is	because	of	warranties,	which	is	a	pledge	by	a	manufacturer	to	provide	protection	from
repair	costs	for	a	limited	time	after	purchase.

However,	that	shiny	newness	and	warranty	comes	at	a	higher	price,	so	the	question	is	always:	 “Is	the	additional
expense	worth	it?”

A	Lot	Of	Ins	and	Outs,	What-Have-You’s	And	Strands	To	Keep	In	Your	Head

All	of	the	above	considerations	regarding	whether	to	repair	or	replace	may	be	difficult	to	keep	straight	in	your	mind	(I
know	it	was	for	me	when	writing	this	section),	so	I’ve	created	this	table	summarizing	the	main	points:

Issue Repair
Replace
with
equivalent

Upgrade
the
system

Downgrade
the
system

Problem	discovery	(i.e.,	figuring	out
what’s	wrong)

–	MINUS +	PLUS +	PLUS +	PLUS

Fix	must	be	executed	properly –	MINUS +	PLUS +	PLUS +	PLUS

Possible	waste	of	materials	(spare
parts,	etc.)

–	MINUS +	PLUS +	PLUS +	PLUS

Reuse	of	knowledge	for	future	fixes +	PLUS –	MINUS –	MINUS –	MINUS

Opportunities	to	learn	from	failures
(RCA,	etc.)

+	PLUS –	MINUS –	MINUS –	MINUS

Use	of	consumables	(energy,	etc.) ±	NEUTRAL ±	NEUTRAL –	MINUS +	PLUS

Compatibility +	PLUS –	MINUS –	MINUS –	MINUS

Break-in	period +	PLUS –	MINUS –	MINUS –	MINUS

Configuration/tuning +	PLUS –	MINUS –	MINUS –	MINUS

Installation	costs +	PLUS –	MINUS –	MINUS –	MINUS

Time	to	resolution –	MINUS +	PLUS +	PLUS +	PLUS

Throughput/features ±	NEUTRAL ±	NEUTRAL +	PLUS –	MINUS

System	complexity ±	NEUTRAL ±	NEUTRAL –	MINUS +	PLUS

Warranty	protection –	MINUS +	PLUS +	PLUS +	PLUS

Future	repair	ecosystem:	availability	of
parts,	know-how,	etc.	(i.e.,	sticking
with	the	“herd”)

–	MINUS +	PLUS +	PLUS +	PLUS

Protection	from	obsolescence –	MINUS –	MINUS +	PLUS –	MINUS

Please	note	that	I	chose	what	I	believe	is	the	most	common	outcome	or	experience	for	each	of	these	scenarios.	To	give
you	just	one	example	of	how	difficult	it	is	to	summarize	these	parameters,	take	a	look	at	“Use	of	consumables”	for	the
“Upgrade”	category.	I	mark	it	as	a	“minus”	because,	in	my	experience,	when	you	upgrade	to	a	bigger/faster/stronger
system,	consumption	of	inputs	usually	increases	(especially	energy).	However,	technology	can	mitigate	this	tendency:	if
a	lot	of	innovation	has	occurred,	newer	models	can	be	better	in	all	respects.	That	is,	they	can	be	cheaper,	faster,
longer-lasting,	and	more	energy	efficient	all	at	once!

The	above	table	shows	how	complicated	the	“repair	vs	replace”	decision	can	be,	especially	if	you	also	add	“used	vs

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 219

http://www.youtube.com/watch?v=Jw36ivnRHRQ

new”	to	the	mix.	Depending	on	your	circumstances,	any	one	of	the	factors	discussed	can	be	in	the	driver’s	seat	and
overshadow	the	rest.	Here	are	some	examples	that	solidify	the	point:

Reuse	of	knowledge:	a	clothing	factory	has	recently	purchased	and	installed	1,000	identical	sewing	machines.	One
breaks	down.	The	know-how	gained	from	diagnosing	and	completing	the	repair	can	be	applied	to	the	other	999
sewing	machines	in	the	factory.	Even	if	this	particular	repair	turns	out	to	be	uneconomical,	what	you	learn	will	be
invaluable	for	future	“repair	vs	replace”	decisions.	The	value	of	the	experience	will	literally	be	multiplied	a
thousand-fold.	Verdict:	Repair.
Consumables:	a	home’s	old	air-conditioner	has	broken	down.	Between	now	and	when	it	was	installed	20	years
ago,	the	cost	of	electricity	has	skyrocketed	and	newer	models	are	much	more	efficient.	Even	though	repair	is	a
cheaper	option,	the	homeowner	calculates	the	energy	savings	from	a	new	unit	would	pay	for	the	difference	in	less
than	6	months.	Verdict:	Replace.
Time	to	resolution:	the	switch	at	the	heart	of	a	bank’s	computer	network	malfunctions	at	the	end	of	the	business
day.	Basic	troubleshooting	yields	no	resolution.	Just	a	single	day’s	lost	business	from	a	network	outage	would	be
1,000	times	the	cost	of	a	new	switch,	which	can	be	procured	from	a	local	electronics	retailer	and	installed	the
same	night.	Verdict:	Replace.
Installation	costs/break-in	period:	the	main	ingredient	mixer	at	a	fruitcake	bakery	malfunctions	in	late	October.
This	particular	model	had	a	long,	3-month	break-in	period	where	it	could	only	be	run	at	half-speed.	Even	though
fixing	it	might	be	expensive,	replacing	it	would	severely	bottleneck	production	right	before	the	busy	Christmas
season	(because	of	the	slowness	associated	with	the	break-in	period	of	a	new	unit).	The	mixer	is	also	very	heavy
and	bolted	to	the	floor;	moving	it	would	take	an	entire	day.	Verdict:	Repair.
Protection	from	obsolescence:	a	company	that	specializes	in	safety	reflectors	for	bicyclists	suffers	a	break	down	to
the	machine	that	applies	the	reflective	coating	to	their	various	products.	The	market	this	company	serves	has	been
moving	towards	a	new	and	brighter	reflective	coating	technology.	Unfortunately,	the	broken	machine	doesn’t	have
the	capability	to	apply	the	new	reflector	coating	material.	Because	it	was	scheduled	to	be	replaced	anyway,	it
makes	sense	to	accelerate	the	purchase	of	the	new	machine.	Verdict:	Replace.

In	conclusion,	the	repair	or	replace	dilemma	is	framed	by	the	need	that	persists	after	a	machine	breaks	down.	This
unmet	necessity	is	primary	and	your	resources	are	limited,	so	be	sure	to	compare	the	two	paths	before	making	a
decision.	For	fixing	to	be	competitive,	the	cause	must	be	quickly	identified	and	the	pitfalls	associated	with	repair	deftly
avoided.	On	the	other	hand,	finding	a	suitable	replacement	has	its	own	costs	and	perils.	The	desire	to	save	resources
drives	the	search	for	the	optimal	solution;	this	goal-directed	action,	done	in	the	face	of	uncertainty,	is	why	the
troubleshooter	and	the	entrepreneur	are	kindred	spirits.

References:

Header	image:	“Phone	repair”.	Kilian	Seiler,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/PZLgTUAhxMM.
1	Ludwig	von	Mises,	Human	Action,	Chapter	1.	Acting	Man	(pg.	11).
2	Adam	Smith,	Wealth	of	Nations,	I.	Of	the	Division	of	Labour.
Nicholas	Wade,	“Your	Body	Is	Younger	Than	You	Think,”	The	New	York	Times,	August	2,	2005.

Repair	Or	Replace?	was	originally	published	June	5,	2013.

Notes:

Repair	Or	Replace?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 220

https://unsplash.com/photos/PZLgTUAhxMM
http://mises.org/library/human-action-0
http://www.bartleby.com/10/101.html
http://www.nytimes.com/2005/08/02/science/02cell.html

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited

Human	action	is	the	use	of	means	to	arrive	at	preferred	ends.	Such	action	contrasts	to	the	observed	behavior	of
stones	and	planets,	for	it	implies	purpose	on	the	part	of	the	actor.	Action	implies	choice	among	alternatives.

Murray	Rothbard

Introduction

When	I	first	sat	down	to	write	about	 the	“repair	or	replace”	dilemma,	in	the	back	of	my	mind	there	was	a	vague	notion
that	a	simple,	calculation-based	method	would	be	the	ultimate	solution.	I	had	heard	of	the	50%	Rule	and	thought	that
it	(or	something	like	it)	would	be	the	obvious	centerpiece	of	the	decision-making	process.

However,	my	thinking	on	the	topic	quickly	evolved.	As	I	reviewed	my	own	history	of	grappling	with	“repair	or
replace,”	especially	in	the	context	of	my	role	as	a	CTO,	I	found	it	wrapped	up	in	all	the	glorious	complexity	of	the
problems	faced	by	the	entrepreneur.	The	need	a	machine	fulfills	is	the	driving	force	behind	the	decision-making
process.	The	myriad	ways	in	which	we	use	machines	to	satisfy	our	desires,	along	with	the	constraints	and	benefits
presented	by	a	particular	situation,	are	difficult	to	express	in	an	equation.

Both	repair	and	replacement	have	a	long	list	of	pros	and	cons	associated	with	them.	Depending	on	the	circumstances,
the	controlling	factor	that	ultimately	drives	your	decision	can	vary	widely.	Can	a	formula	take	into	account	all	of	this
complexity,	and	spit	out	the	correct	answer?	My	first	pass	left	the	50%	Rule	wanting	as	a	tool:	it	had	no	obvious	way	of
incorporating	the	aspects	which	I	felt	were	primary	considerations,	so	I	completely	cut	any	mention	of	it	from	my

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 221

https://artoftroubleshooting.com/2013/06/04/repair-or-replace/

original	piece,	“Repair	Or	Replace?”.

Still,	I	was	determined	to	revisit	the	issue	and	test	the	50%	Rule	as	a	decision-making	guide.	That’s	because	I	found	so
many	references	to	it	in	various	advice	columns	pitched	to	everyday	consumers.	Even	the	vaunted	Consumer	Reports
magazine	cites	it	as	a	rule	of	thumb	to	resolve	the	repair	or	replace	conundrum.	Perhaps	the	50%	Rule	couldn’t
describe	the	complicated	decision	matrix	used	to	choose	a	machine	for	a	particular	purpose,	but	maybe	it	did	have	a
narrower	context	in	which	it	should	be	called	upon?	I	wanted	to	find	out.

Can	the	repair	or	replace	decision	be	reduced	to	an	equation?
(image:	Smithsonian	Institution)

It’s	Still	Worth	Something,	Right?

Before	we	get	to	the	50%	Rule,	I	want	to	discuss	some	basic	ways	to	think	about	the	economic	value	of	repair.	Let’s
start	at	the	beginning,	with	the	broken	system	itself:	it’s	easy	to	forget	that,	although	a	machine	is	broken,	it	usually
retains	some	worth.	If	you	choose	to	forgo	repair,	you	can	often	receive	something	in	exchange	for	a	non-

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 222

https://artoftroubleshooting.com/2013/06/04/repair-or-replace/
http://www.nytimes.com/2009/05/28/garden/28repair.html?pagewanted=all
http://www.aarp.org/money/budgeting-saving/info-09-2010/savings_challenge_worn_repair_or_replace.html
http://consumerreports.org/cro/magazine-archive/2011/august/shopping/repair-or-replace-it/overview/index.htm
https://www.flickr.com/photos/smithsonian/4729473009/

working	system.	That	something	is	called	the	salvage	value.	In	accounting,	the	term	has	a	specific	meaning	with
respect	to	depreciation:	“the	estimated	value	that	an	asset	will	realize	upon	its	sale	at	the	end	of	its	useful	life.” 	Of
course,	whether	or	not	to	extend	the	“useful	life”	of	a	machine	is	exactly	the	decision	we’re	trying	to	make.

Salvage	values	will	vary	widely	depending	upon	the	type	of	machine	and	the	market	for	its	components.	Many	times	a
car,	even	in	a	state	of	total	disrepair,	can	be	sold	for	parts	to	a	local	junkyard.	Consumer	electronics	often	fare	much
worse.	For	instance,	considering	a	new	one	can	be	had	for	almost	nothing,	a	broken	DVD	player	will	likely	have	no
residual	worth	to	others.	There’s	one	more	twist:	sometimes	a	machine’s	salvage	value	can	be	negative	if	there	is	a
disposal	cost	involved.	While	I	have	sold	cars	to	the	junkyard	in	the	past,	I	haven’t	always	been	successful	in	this
endeavor.	I	remember	when	my	first	mini-van	(don’t	laugh,	it	was	a	pretty	sweet	ride),	which	I	drove	out	West	when	I
first	moved	to	San	Francisco,	was	involved	in	an	accident	and	completely	wrecked.	I	called	several	local	junkyards	and
was	surprised	that	nobody	wanted	it—even	when	I	offered	it	to	them	for	free!	I	contacted	some	local	tow-truck	drivers,
who	had	personal	relationships	with	many	more	firms	than	I	tried	initially,	and	even	they	couldn’t	give	it	away.	That
mini-van	ending	up	having	a	negative	salvage	value	of	several	hundred	dollars,	which	included	a	disposal	fee	and	the
cost	of	a	tow.

Scarcity	and	demand	drives	the	salvage	value:	you	can	easily	see	this	in	the	price	paid	for	vintage	cars	and	their	parts.
For	example,	there	were	only	a	couple	thousand	Plymouth	Superbirds	built.	Working	or	not,	these	cars	are	highly
sought	after	by	collectors	and	restorers,	commanding	a	much	higher	price	than	similar	vehicles	from	the	same	era.
Finally,	on	the	extreme	end	of	salvage	values,	I	present	this	fine	specimen	to	you:	in	2011,	Tata	Motors	unveiled
an	insane	version	of	their	Nano,	slathered	in	about	$4	million	worth	of	precious	stones	and	gold	(80	kg,	22	karat!).	The
grandiose	bling-o-rama	of	this	publicity	stunt	has	a	curious	effect	on	the	salvage	value	of	such	a	car:

Working	gold-and-jewel-encrusted	Tata	Nano:	$4	million
Not	working	gold-and-jewel-encrusted	Tata	Nano:	$4	million

Functional	or	not,	this	car	is	worth	about	the	same.	This	is	one	of	those	rare	examples	where	a	machine’s	value	is
independent	of	its	working	state.

Value-Added	Repair

Whereas	a	breakdown	takes	away	from	a	machine’s	value,	repair	should	add	it	back.	However,	recapturing	that	added
value	when	it	comes	time	to	sell	is	constrained	by	the	other	options	available	to	buyers	in	the	market.	You	may	be
objectively	improving	a	machine’s	capabilities	by	having	it	fixed,	but	that	investment	won’t	necessarily	be	recognized
by	buyers	and	returned	to	you	later	on.	Let’s	walk	through	a	classic	example	of	an	uneconomic	repair	scenario.	You
purchase	a	used	car	at	the	righteous	price	of	$500.	It	may	not	look	like	much,	but	hey,	it’s	transportation:

“She	may	not	look	like	much,	but	she’s	got	it	where	it	counts,	kid.”
(image:	hobvias	sudoneighm	/	CC	BY	2.0)

After	driving	it	for	a	few	months,	it	breaks	down.	After	consulting	with	a	mechanic,	it	is	determined	that	the
transmission	is	bad	and	needs	to	be	replaced.	The	total	bill	(parts	and	labor)	for	a	new	transmission	is	$2,000.	You
agree	to	the	repair,	thinking	“If	I	spend	$2,000	fixing	the	car,	it	should	be	worth	at	least	that	amount	afterwards,	right?”
A	year	later,	you	want	to	upgrade	your	wheels	and	put	the	car	up	for	sale,	but	are	unable	to	find	a	buyer	in	the	$2,000

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 223

http://www.investopedia.com/terms/s/salvagevalue.asp
http://www.investopedia.com/terms/s/salvagevalue.asp
http://en.wikipedia.org/wiki/Plymouth_Superbird
http://blogs.wsj.com/indiarealtime/2011/09/19/gold-nano-the-people%25E2%2580%2599s-car-meets-super-bling/
http://www.imdb.com/title/tt0076759/quotes?item=qt0440686
https://www.flickr.com/photos/striatic/22616797
https://creativecommons.org/licenses/by/2.0/

range.	In	fact,	the	best	offer	you	get	is	$500,	what	you	originally	paid	for	the	car	in	the	first	place.	What	happened	to
your	significant	repair	investment?

Well,	when	you	bought	the	car,	you	had	many	options	of	what	to	do	with	your	$500.	Likewise,	your	potential	buyers
do	as	well.	Car	shoppers	won’t	care	what	you’ve	spent	on	the	car	in	the	past:	they’re	only	concerned	with	what	their
money	can	buy	them	now.	If	the	prevailing	market	price	for	a	similar	used	car	is	$500,	then	that	is	where	you’ll	need
to	price	yours	if	you	want	it	to	sell.	Sadly,	all	your	$2,000	investment	did	was	to	restore	the	car	to	the	point	where	it
could	be	considered	an	equal	amongst	the	other	options	in	the	$500	range.	Sure,	it	has	a	brand	new	transmission,
making	it	an	undeniably	better	car	in	that	respect,	but	look	at	the	options	from	the	perspective	of	a	buyer.	They	could
take	your	asking	price	of	$2,000	and	buy	four	(4	x	$500	=	$2,000)	equally	bedraggled	chariots,	driving	each	one	in
turn	until	it	dies.

The	lesson	here	is	that	the	market	will	limit	your	ability	to	recapture	the	cost	of	repairs	when	it’s	time	to	sell.	We	can
describe	this	situation	mathematically	and	attempt	to	discover	in	advance	if	we’re	about	to	create	a	loss.	I’ll	show	you
the	formula	for	the	implied	value	of	a	repair,	to	see	how	the	market	values	it.	First,	let’s	define	a	couple	of	variables:

msalvage	=	market	value	of	the	broken	machine	(aka,	the	salvage	value)
mpost-repair	=	market	value	of	the	machine	after	repair
rvalue-added	=	value	added	to	the	machine	by	the	repair

which	are	related	like	this:

mpost-repair	–	msalvage	=	rvalue-added

For	our	transmission	example,	let’s	say	the	salvage	value	of	our	car	was	$100.	Sadly,	we	found	out	that	the	resale	value
of	the	car,	even	after	making	our	costly	repair,	was	only	$500.	Therefore	the	implied	value	of	the	transmission	repair
was:

$500	–	$100	=	$400

This	fix	raised	the	value	of	the	car	from	its	salvage	value	of	$100	to	$500,	so	we	can	say	that	the	 market	value	of	the
repair	was	the	difference:	four	hundred	dollars	($400).	I	know	what	you’re	thinking:	unfortunately,	we	paid	$2,000	for
this	work!

Let’s	prevent	this	from	happening	again.	We’ll	define	one	more	variable:

rcost	=	the	direct,	out-of-pocket	cost	of	the	repair

and	note	the	relationship	for	an	economically	sound	repair	decision:

rcost	≤	rvalue-added

This	inequality	says	that	the	improvement	in	the	market	value	of	a	machine	should	be	less	than	or	equal	to	the	cost	of
the	repair.	In	our	case,	that	was	not	true.	We	paid	$2,000	which	resulted	in	an	increased	value	of	only	$400.	Instead,
we	might	have	had	more	fun	losing	it	at	a	casino,	or	created	an	art	film	of	ourselves	burning	the	money.	At	least	that
would	have	made	for	a	good	cocktail	party	story.

Therefore,	we	can	calculate	a	profit	or	loss	from	a	repair	as	follows:

rvalue-added	–	rcost	=	rprofit/loss

In	the	case	of	our	$2,000	transmission	repair,	that	would	be	a	loss	of:

$400	–	$2,000	=	-$1,600

Ouch.	However,	if	you	stay	on	the	sunny	side	of	this	equation,	there’s	also	the	chance	to	make	gains	from	your	repairs.
Let’s	say	you	have	an	amazing	pair	of	mechanics	at	your	disposal,	like	the	deeply	expert	Tappet	Brothers	(perhaps	the
most	famous	troubleshooters	of	our	time).	They	take	your	hunk	of	junk,	make	a	few	clever	jokes	(at	each	other’s

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 224

http://en.wikipedia.org/wiki/K_Foundation_Burn_a_Million_Quid
http://www.cartalk.com/

expense),	and	fix	the	transmission	for	$50.	This	allows	you	to	sell	it	for	$500	to	some	other	sucker.	Now,	the	profit/loss
calculation	(r(value-added)	–	r(cost)	=	r(profit/loss))	is	a	very	happy	one:

$400	–	$50	=	$350

A	$50	repair	that	improves	the	market	value	by	$400	is	a	slam	dunk.

Where	Did	The	Dough	Go?

The	risk	of	not	recapturing	your	investment	is	present	in	so	many	different	situations	in	life	and	business.	Home
renovations	instantly	come	to	mind:	you	can	do	the	same	analysis	of	a	dwelling’s	price	before	and	after	a	remodel.	It’s
very	easy	to	spend	money	on	renovations	that	do	not	increase	the	value	of	a	home	by	an	equal	amount,	just	like	in	the
transmission	repair	example	above.

But…where	did	the	money	go?	How	can	it	just	disappear?	This	brings	us	to	a	very	interesting	aspect	of	making
improvements	to	your	possessions.	Whether	it’s	repairing	a	car,	house,	refrigerator,	or	computer,	if	you	intend	to	resell
it,	you	have	become	a	de	facto	entrepreneur.	No	longer	is	the	decision	about	the	 subjective	value	you	receive	from	a
successful	repair,	but	rather	about	anticipating	the	future	needs	of	buyers	and	the	market	conditions	when	it	comes
time	to	sell.

Fixing	a	broken	machine	with	the	intent	of	eventually	reselling	it	is	conceptually	no	different	from	what	any
manufacturer	does.	A	pencil-maker	assembles	things	like	brass,	cedar,	factice,	glue,	graphite,	lacquer,	pumice,	and
wax.	Combining	and	transforming	these	raw	materials	with	labor,	he	tries	to	correctly	anticipate	the	public’s	demand
for	writing	instruments,	hoping	to	sell	the	pencils	for	a	gain.	(Please	read	“I,	Pencil”	for	an	eloquent	and	eye-opening
narrative	of	the	coordination	and	complexity	required	to	produce	this	consumer	staple	you’ve	probably	taken	for
granted.)

In	the	case	of	the	transmission	repair,	even	though	our	product	was	a	one-off,	we	temporarily	became	a	manufacturer.
We	took	some	intermediate	goods	(a	broken	down	car	and	replacements	parts),	hired	some	labor	(the	efforts	of	a
mechanic),	and	created	a	new	product:	a	lousy	car	with	a	brand-new	transmission.	However,	is	this	something	that
potential	buyers	want	and	are	willing	to	pay	for	at	the	price	we	will	offer	later	on?	I	think	it’s	safe	to	say	that	the	people
who	desire	run-down	cars	want	them	precisely	because	they	don’t	have	brand-new	transmissions.	That	is,	they’re
trying	to	save	money!

We	could	drive	that	car	another	500,000	miles	until	the	transmission	died	again,	making	the	repair	solely	for	our	own
consumption.	In	that	case,	any	market-based	loss	would	only	be	theoretical.	Whatever	the	outcome,	devoting
resources	to	the	fix	could	be	justified	exclusively	on	our	own	hierarchy	of	values.	Again,	the	market	price	is	different
from	how	much	a	repair	is	personally	worth	to	you.

Of	course,	we’d	still	need	to	contend	with	opportunity	costs,	that	nagging	suspicion	that	our	money	could	have	been
better	spent	elsewhere.	The	$2,000	we	dropped	on	the	transmission	repair	could	easily	have	been	allocated	differently.
Our	beater	could	have	been	sold	for	its	salvage	value	of	$100.	That	amount	plus	$400	from	our	savings	could	have
been	spent	on	another	fabulous	jalopy.	Our	transportation	problem	solved,	the	remaining	$1,600	could	then	have	been
used	on…a	fabulous	vacation	to	Hawaii!	No	matter	how	we	forked	out	that	$2,000,	we	always	run	the	risk	of
deciding,	in	retrospect,	that	it	could	have	been	better	spent.

50%…Of	What?

Now	that	we’ve	laid	out	the	basics	for	how	to	think	about	the	value	of	broken	machines	and	repairs,	let’s	move	on	to
the	50%	Rule.	First	off,	we	should	define	the	maxim.	The	basic	idea	is	that	you	compare	the	cost	of	repair	to	the	cost	of
replacement.	If	repair	exceeds	50%	of	a	particular	threshold,	the	rule	says	you	should	opt	to	replace.	But,	if	a	repair
can	be	completed	for	less	than	50%	of	the	baseline,	then	you	should	choose	to	fix.	So,	the	inequality	favoring	repair
looks	like	this:

Repair	Cost	<	Replacement	Threshold	×	50%

Unfortunately,	I	couldn’t	find	an	official	definition	of	the	50%	Rule,	at	least	with	respect	to	the	repair	or	replacement	of
machines	(it	seems	more	well-defined	in	the	world	of	real	estate,	insurance,	and	disaster	recovery).	What’s	especially
problematic	is	that	the	threshold	value	that	repair	is	weighed	against	is	variously	cited	as:

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 225

http://wiki.mises.org/wiki/Subjective_theory_of_value
https://fee.org/resources/i-pencil/
http://en.wikipedia.org/wiki/Intermediate_good
https://mises.org/daily/5333/subjectivevalue-theory
http://www.fema.gov/9500-series-policy-publications/95244-repair-vs-replacement-facility-under-44-cfr-ss206226f-50-rule

The	original	purchase	price	of	the	broken	machine.
The	current	replacement	value	of	an	equivalent	machine	(i.e.,	a	similarly	used	one).
The	cost	of	a	new	machine.

For	a	given	situation,	each	of	these	benchmarks	could	provide	a	wildly	different	answer,	tipping	the	scales	in	either	the
direction	of	repair	or	replace.	Figuring	out	what	the	standard	should	be	is	going	to	be	our	first	challenge,	and	we
haven’t	even	gotten	to	the	math	and	statistics	behind	the	rule.

As	time	passes,	technological	change	and	inflation	will	make	“original	cost”	a	faulty	benchmark	to	use	for	the
repair	or	replace	decision.	Adjusted	for	inflation,	the	ground-breaking	ENIAC	computer	cost	$6	million.	Even

at	its	original	price	of	$500,000,	the	equivalent	computing	power	could	be	purchased	today	for	almost
nothing.

(image:	US	Army	Photo)

The	(Original)	Price	Is…Wrong

Using	the	original	purchase	price	as	a	standard	for	the	50%	Rule	would	seem	to	be	the	most	problematic	of	all	our
choices.	If	a	machine	is	old,	inflation	will	have	eaten	away	at	the	value	of	the	price	you	paid	for	it,	making	it	appear
smaller.	Using	this	as	a	benchmark	will	sadly	tell	you	more	about	the	misguided	policies	of	central	banks	and
the	debasement	of	your	money	over	time	(leading	to	a	wholly	different	“repair	or	replace”	discussion).	While	I
encourage	that	introspection,	it	doesn’t	advance	our	goal	of	figuring	out	what	to	do	with	a	broken	machine.	Also,	it
seems	like	a	lot	to	ask	the	average	consumer	to	get	out	a	table	of	inflation	statistics	and	calculate	constant	dollars,	tied
to	some	benchmark	year,	like	economists	do.	Although,	the	folks	at	the	US	Bureau	of	Labor	Statistics	have	made	it
awfully	easy	to	do	just	that,	with	this	handy	web-based	inflation	calculator.

Counterbalancing	the	effect	of	inflation	on	the	original	cost	is	technological	change,	which	will	make	the	original	price
paid	seem	much	larger.	For	example,	the	first	all-purpose	digital	computer	was	named	 ENIAC	and	built	at	the
University	of	Pennsylvania	in	1946.	This	“giant	brain”	was	built	at	a	cost	of	$500,000	(about	$6	million	today).	Using
that	sum	to	weigh	a	repair	decision,	with	the	idea	that	you	would	pay	to	have	another	ENIAC	built	(even	just	a	few
years	later),	is	folly.	When	it	comes	to	industries	where	rapid	innovation	is	taking	place,	current	designs	are	often	better
in	all	respects	and	cheaper	too.	This	is	definitely	the	case	for	most	consumer	electronics,	especially	those	subject	to
Moore’s	Law.

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 226

http://ftp.arl.army.mil/ftp/historic-computers/
https://mises.org/library/what-you-should-know-about-inflation
http://en.wikipedia.org/wiki/Constant_dollars
http://data.bls.gov/cgi-bin/cpicalc.pl
http://en.wikipedia.org/wiki/ENIAC
http://data.bls.gov/cgi-bin/cpicalc.pl?cost1=500000&year1=1946&year2=2014
http://en.wikipedia.org/wiki/Moore's_law

Get	Me	Another	One	Like	This	(That	Works!)

The	replacement	cost	of	an	identical	machine	(i.e.,	a	used	one	in	similar	condition)	would	seem	like	a	better	choice	as
a	basis	for	comparison,	given	that	it	keeps	the	variables	in	play	at	a	minimum.	This	standard	attempts	to	make	an
apples-to-apples	comparison	by	asking	“How	much	would	it	cost	to	acquire	a	machine	exactly	like	this?”	Of	course,
you	want	a	machine	just	like	the	broken	one,	with	one	important	difference:	the	replacement	should	work!	Since	the
replacement	cost	is	the	price	as	of	now,	this	standard	won’t	suffer	from	time-based	distortions	like	inflation	or
technological	change.

However,	we	should	be	clear	about	the	practical	problems	with	this	as	a	standard	to	be	employed	in	real-world
situations:

Finding	an	available	identical	replacement	is	often	impossible.	You	may	be	contemplating	a	repair	or	replace
decision	for	a	2012	Porsche	Carrera	with	10,000	miles,	but	what	if	the	closest	you	can	find	in	your	area	is	a	2011
model	with	25,000	miles?	To	use	replacement	cost	as	a	benchmark	implies	that	a	replacement	can	actually	be
purchased!	You	may	be	able	to	look	up	the	theoretical	value	in	a	price	guide	or	see	recent	auction	closing	prices,
but	that	doesn’t	mean	that	one	will	be	readily	available	to	actually	buy.
Even	if	you	can	find	an	identical	machine,	it	will	not	have	been	used	the	same	way.	Imagine	two	cars,	rolling	off
the	assembly	line	one	after	the	other	at	a	car	factory.	These	twin	specimens	may	be	the	same	make,	model	year,
and	have	the	same	installed	options.	However,	one	car	is	delivered	to	a	suburban	family	and	the	other	to	the	fleet
of	a	taxi	company.	After	10	years	of	use,	these	“identical”	machines	will	be	quite	different:	their	wear	patterns	will
reflect	their	much	different	working	lives.
For	relatively	rare	machines,	there	may	not	be	a	thriving	secondary	market	from	which	to	obtain	pricing
information.	How	much	would	it	cost	to	buy	a	1931	Royal	Enfield	Bullet?	It	might	have	been	years	since	one
changed	hands!	Also,	are	the	parties	willing	to	disclose	the	price	paid?	How	much	is	your	time	worth	to	obtain	this
information?	Remember	the	concept	of	opportunity	costs	before	embarking	on	a	wild	goose	chase	for	something
rare.

This	amazing	photo	is	a	superb	visual	representation	of	the	pace	of	technological	change,	even	in	just	a
relatively	short	period	of	time.	From	left	to	right	are	comparable	circuits	boards	from	the	ENIAC,	EDVAC,
ORDVAC,	and	BRLESC-I	computers.	The	timeframe	between	these	four	specimens	is	only	16	years	(1946-
1962),	but	look	at	the	dramatic	miniaturization	taking	place.	When	using	a	benchmark	like	the	original

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 227

http://en.wikipedia.org/wiki/Royal_Enfield_Bullet
https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/

purchase	price	or	replacement	value	(i.e.,	comparing	a	machine	to	itself),	innovation	is	a	key	piece	of
contextual	information	omitted	by	the	50%	Rule.

(image:	US	Army	Photo)

You’ve	Moved	On

As	time	moves	on,	your	needs	will	inevitably	change.	This	is	the	biggest	problem	with	automatically	assuming	an	old
machine	(in	the	guise	of	replacement	cost)	should	be	revived	or	searched	for	in	the	used	market.	Machines	amplify	our
purposeful	intentions;	any	rule	of	thumb	that	doesn’t	take	this	into	account	is	missing	the	point	about	why	we	employ
them.	Although	general	purpose,	the	ENIAC	was	designed	to	solve	WWII-era	problems:	the	calculation	of	artillery
firing	tables.	In	contrast,	the	increased	power	of	the	later	BRLESC-I	(Ballistic	Research	Laboratories	Electronic	Scientific
Computer,	launched	in	1962)	was	needed	to	solve	Space	Age	and	Cold	War	problems	involving	nuclear	weapons,
missiles,	and	satellites.	The	ENIAC	could	perform	5,000	operations	per	second,	but	the	BRLESC-I	could	do	5	million.
Repairing	or	replacing	an	equivalent	machine	isn’t	an	option	when	your	needs	have	changed.	It	doesn’t	matter	if	we’re
talking	about	a	supercomputer,	toaster,	car,	or	backhoe.

Having	a	machine	that	was	doing	useful	work	for	you	malfunction	is	a	loss:	the	resources	you	must	now	devote	to	its
repair	or	replacement	can’t	be	used	elsewhere.	While	this	is	a	drain,	you	should	make	the	best	of	it.	Since	change	is
being	forced	upon	you,	take	the	opportunity	to	fully	reassess	your	needs	vis-à-vis	the	machine	in	question.	Often,	you’ll
find	that	things	have	changed	and	your	purposes	could	be	better	served	some	other	way.	At	these	pivot	points,	I’ve
often	made	the	decision	to	upgrade	or	downgrade,	finding	a	better	fit	with	either	a	more	or	less	capable	machine.
(Please	see	the	section	titled	“The	Need,	Reassessed”	in	“Repair	Or	Replace?”	for	the	full	discussion	of	this	point.)

I’ve	also	decided	to	do	nothing:	that	is,	to	neither	repair	or	replace,	opting	instead	to	simply	cut	ties	and	sell	a	machine
for	its	salvage	value.	Especially	for	those	things	we	employ	for	leisure	(aka,	“toys”),	you	may	find	that	the	“need”	was
weak	and	your	life	is	better	off	without	them	entirely.	Maybe	you	impulsively	bought	a	boat	that	you	thought	you’d	use
every	weekend.	But,	the	maintenance	hassles	and	your	busy	life	resulted	in	the	craft	only	being	used	twice	a	year.
Perhaps	you’d	like	the	garage	space	back.	Remember	the	old	saying:	“The	two	happiest	days	in	a	boat	owner’s	life	are
the	day	he	buys	it	and	the	day	he	sells	it.”	The	sentiment	behind	this	adage	applies	to	so	many	things,	not	just	boats!

Lately,	I’ve	gained	a	tremendous	satisfaction	from	reducing	the	number	of	“things”	in	my	life.	Your	stuff	has	an
overhead	which	may	carry	an	unwelcome	cost	of	ownership,	especially	if	your	life	is	already	full.	In	these	cases,	a
malfunction	may	be	an	invitation	to	simplify	and	regain	the	most	precious	resource	of	all:	your	time.

Why	Would	I	Pay	More	For	The	Same	Thing?

Even	though	replacement	cost	has	some	potential	issues,	at	least	we’ve	found	a	basis	for	comparison	that’s	internally
consistent	and	up-to-date.	Unfortunately,	there’s	a	huge	problem	with	using	replacement	cost	to	calculate	the	50%
Rule:	it	doesn’t	make	any	sense!	Here’s	an	example	that	shows	why:	let’s	say	you	buy	a	refrigerator	and	it	stops
working	after	the	warranty	period	expires	(drat).	Yours	is	a	common	model	that’s	sold	millions	of	units,	so	equivalently
used	replacements	are	easily	had	for	$400.	The	estimate	for	repair	is	$240.	The	50%	Rule	is:

rcost	÷	mreplacement	<	50%

In	our	case:

$400	÷	$240	=	60%

If	repair	costs	$240	and	an	equivalently	used	replacement	is	$400,	repair	is	60%	of	the	replacement	cost.	In	this	case,
the	50%	Rule	says	to	replace.	What?!	Think	about	what	this	means;	we	are	supposedly	comparing	apples-to-apples.	If
you	could	pay	$240	or	$400	for	the	exact	same	thing,	which	would	you	choose?	That’s	right,	the	cheaper	one!	When
comparing	equivalent	items,	as	long	as	repair	is	less	than	the	replacement	cost,	you	should	repair	(and	vice	versa).	For
this	reason,	there’s	no	way	we	can	use	replacement	cost	as	the	benchmark	for	the	50%	Rule.	Bizarrely,	it	recommends
spending	up	to	100%	more—for	the	same	thing!

New

Perhaps	instead	we	should	be	comparing	the	cost	of	repair	to	buying	a	new	machine.	This	has	great	appeal,	given	the
problems	often	associated	with	finding	a	suitable	and	identically	used	replacement.	Whether	on-line,	in	a	local	store,

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 228

http://ftp.arl.army.mil/ftp/historic-computers/
http://en.wikipedia.org/wiki/BRLESC
http://ftp.arl.army.mil/mike/comphist/61ordnance/chap5.html
https://artoftroubleshooting.com/2013/06/04/repair-or-replace/

or	via	a	phone	call	to	a	sales	representative,	manufacturers	make	it	very	easy	to	buy	new.	Information	for	new	products
is	available	in	abundance:	delivery	dates,	specifications,	and,	most	importantly,	pricing	details.	Return	policies	are
often	generous	compared	to	the	“as	is”	nature	of	used	sales.	Warranties	mitigate	the	risk	of	a	buying	a	“lemon”	and
give	predictability	to	service	costs	(at	least	for	a	limited	time).	There’s	much	to	be	said	for	buying	new.

However,	again	we	run	into	the	fact	that	choosing	new	as	the	standard	for	comparison	of	the	50%	Rule	requires	a	very
important	judgement	to	be	made	first.	Why	incur	the	additional	expense	of	buying	new	if	a	used	machine	will
adequately	meet	your	needs?

Aye,	here’s	the	rub:	with	new	as	the	standard,	we’re	not	comparing	apples-to-apples	anymore.	A	new	machine	will
have	different	capabilities,	warranties,	maintenance	costs,	and	longevity	expectations.	Presumably,	we’d	like	to	assign
a	dollar	value	to	these	advantages	and	see	if	the	additional	expense	was	worth	it.	The	only	thing	the	50%	Rule	would
seem	to	say	about	the	matter	is	that	used	is	half	as	good	as	new.	That’s	a	pretty	crude	way	to	evaluate	your	choices.

To	see	how	utterly	ridiculous	things	can	get	when	using	new	as	the	standard	with	the	50%	Rule,	let’s	return	again	to
our	broken	down	car	that	needs	a	$2,000	transmission.	While	there’s	nothing	in	the	new	market	that	can	hope	to
compare	with	our	finely	dented	steed,	if	forced	to	choose	an	equivalent	new	replacement,	we’ll	go	with	a	lower-end	4-
door	sedan	for	$17,000.	Let’s	see	what	the	50%	Rule	(rcost	÷	mreplacement	<	50%)	says	to	do:

$2,000	÷	$17,000	=	12%

Because	repair	is	less	than	half	of	the	cost	of	a	new	one,	the	rule	says	to	repair.	Sorry	partner,	them’s	the	rules.	Of
course,	you’d	be	an	idiot	to	do	that	given	that	we’ve	shown	the	market	value	of	such	a	repair	would	incur	a	huge	loss.
The	follies	don’t	end	there:	keep	in	mind	that	the	rule	would	say	that	we	should	consider	any	repair	up	to	$8,500	(50%
of	$17,000).	More	nonsense!

Game	Over

I’m	going	to	stop	here	and	declare	the	50%	Rule	to	be	a	failure	as	a	practical	decision-making	tool.	The	rule	requires	a
benchmark	and,	as	I’ve	shown,	the	ones	offered	all	have	serious	defects.	Using	them	could	result	in	some	very	flawed
outcomes.

If	you	want	numbers	to	guide	you,	the	value-added	model	of	repair:

rvalue-added	–	rcost	=	rprofit/loss

seems	like	a	much	better	alternative.	At	a	minimum,	it	should	be	consulted	to	warn	against	expenditures	that	will	not
be	recoverable	when	reselling.	I	think	that’s	the	biggest	risk	most	consumers	face	and	a	frequently	violated	expectation.
Because	the	market	value	of	the	machine	after	repair	(mpost-repair)	is	required	to	make	this	calculation,	it	forces	you
to	consider	an	important	alternative	for	your	money:	equivalent	replacements	available	in	the	marketplace.	Finally,	the
value-added	calculation	is	up-to-date,	forward-looking,	and	incorporates	the	current	state	of	technological	progress,
while	avoiding	the	effects	of	inflation	and	the	temptation	to	consider	sunk	costs.

But	beyond	the	numbers,	you	need	to	remain	in	touch	with	your	needs	and	how	a	particular	machine	is	serving	them.
Have	those	needs	changed?	What	value	does	a	contraption	bring	to	your	life	or	business?	How	does	that	compare	to
the	alternatives	available	(like	new	models)?	These	considerations	should	come	before	any	repair	or	replace
calculations	are	made,	otherwise	you	will	be	led	by	the	garbage-in,	garbage-out	nature	of	blindly	following	the	results
of	a	formula.

What	Do	You	Think?

I’m	perplexed	that	the	50%	Rule	is	cited	as	a	rule-of-thumb	for	consumers.	If	you	have	a	good	defense	that	addresses
the	problems	I’ve	uncovered,	or	points	out	something	critical	I’ve	missed,	I’m	all	ears.	Tell	me	what	you	think	in	the
comments	section!

References:

Header	image:	Horydczak,	Theodor,	photographer.	Automobiles.	View	from	front	of	wrecked	automobile.	ca.
1920-ca.	1950.	Photograph.	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/thc1995012467/PP/.

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 229

http://en.wikipedia.org/wiki/Lemon_(automobile)
http://en.wikipedia.org/wiki/Garbage_in,_garbage_out
https://www.loc.gov/item/thc1995012467/PP/

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited 	was	originally	published	April	25,	2014.

Notes:

The	50	Percent	Rule:	Repair	Or	Replace,	Revisited	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 230

Talking	About	Your	Problems

I	think	we	always	had	more	respect	for	the	guy	who	came	in	and	said,	“I	think	I’ve	got	a	problem,”	versus
someone	who’d	say	“That	piece	of	crap	is	blah,	blah,	blah.”	Settle	down,	tell	us	what’s	it	doing.	Let’s	look	at	it...

Dan	McCormick

Once	you’ve	become	a	skilled	troubleshooter,	it’s	time	to	look	in	the	mirror	and	think	about	how	you	interact	with	the
people	you	call	on	for	help.	What’s	the	best	way	to	present	your	problems	to	others?	Having	been	on	both	sides,
sometimes	solving	issues	and	sometimes	reporting	them,	I	have	some	thoughts	on	the	matter.

Mixing	Fact	And	Speculation

Since	you’ve	made	the	effort	to	bring	your	problem	to	someone	else,	we	can	assume	that	you’re:

Unsure	about	the	cause	of	the	issue.
Unsure	how	to	fix	it.
Both.

Talking	About	Your	Problems	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 231

If	you’ve	taken	the	time	to	read	The	Art	Of	Troubleshooting,	we	can	make	one	more	assumption:	that	you	have	a	keen
interest	in	fixing	things.	So,	let’s	sound	the	alarm	and	warn	ourselves	against	the	very	thing	we	dislike	when	others
bring	their	problems	to	us:	mixing	speculation	with	facts.

Let	me	explain	with	a	story.	Recently,	some	friends	were	getting	their	hot	tub	repaired	(the	water	in	the	tub	wasn’t
staying	warm).	When	the	technician	showed	up	to	look	at	the	problem,	he	was	told	that	the	“heater	was	broken.”	A
more	skilled	(or,	if	we	were	being	cynical,	honest)	repairman	would	have	responded	to	this	with	the	right	amount	of
skepticism:	“How	exactly	do	you	know	that	the	heater	is	broken?”	However,	this	technician	took	the	provided
description	as	gospel	and	replaced	the	heater.	It	also	turned	out	that	this	guy	really	liked	to	replace	heaters,	the
procedure	was	squarely	in	his	wheelhouse.	Adding	to	the	momentum	was	that	a	replacement	heater	was	on	his	truck,
all	ready	to	go.	Unfortunately,	after	replacing	the	heater,	the	problem	persisted.	On	a	subsequent	visit	with	a	different
technician,	it	was	discovered	that	the	circuit	board	that	controlled	the	heater	was	intermittently	malfunctioning.	The
original	heater	was	probably	fine.	Oops.

Let’s	go	back	to	the	start	of	these	shenanigans	and	think	about	what	went	wrong.	While	it’s	true	that	the	words	“the
heater	is	broken”	were	the	ones	actually	spoken,	the	meaning	was	that	the	water	in	the	hot	tub	wouldn’t	stay	hot.
Mentally,	it’s	convenient	shorthand	to	associate	a	particular	machine	function	with	a	certain	component.	After	all,
“heat”	comes	from	the	appropriately	named	“heater.”	The	cause	and	effect	are	easily	bound	together	in	your	mind;	if
there’s	no	heat,	the	problem	seems	obvious:	the	heater.	There’s	another	possible	semantic	interpretation,	some	people
might	use	“heater”	as	a	synonym	for	“the	heating	system,”	which	includes	everything	the	heater	depends	on:	the
thermostat,	power	source,	etc.	Unfortunately,	people	(like	technicians)	can	take	things	literally:	when	they	hear	“the
heater	is	broken”	they	might	just	go	ahead	and	replace—the	heater!

Be	careful	what	you	tell	them,	they	might	believe	you!
(image:	Jamiesrabbits	/	CC	BY	2.0)

If	You’re	Going	To	Speculate,	Be	Clear	About	It

The	above	example	is	a	good	illustration	of	what	can	unfold	when	a	supposition	is	accidentally	injected	into	a	problem
report.	However,	we	don’t	want	to	have	a	blanket	prohibition	against	speculating	on	the	cause.	That’s	no	fun!	Besides,
what	if	you	actually	have	a	helpful	piece	of	information	that	could	possibly	save	a	technician	hours	of	work?	It’s	okay
to	speculate,	but	you	need	to	clearly	mark	what	you’re	doing:	“I	think	the	heater	may	be	broken	because	the	water	is
cold.	How	can	we	tell	if	that’s	the	cause?”	This	is	a	more	cautious	framing	of	the	problem:	it	points	out	the	symptom
you’re	experiencing	and	what	you	believe	is	the	source	of	the	issue,	while	leaving	room	for	other	possibilities.	It	also
explicitly	states	that	you’re	interested	in	finding	the	cause.	Yep,	that	would	be	nice	to	know.

Symptoms	And	Goals

Talking	About	Your	Problems	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 232

https://artoftroubleshooting.com/2011/09/20/skepticism/
http://www.flickr.com/photos/jamiesrabbits/4280708076/
http://creativecommons.org/licenses/by/2.0/deed.en

Since	you’re	paying	someone	for	their	expertise,	consider	forgoing	speculation	entirely.	If	I’m	really	a	fish	out	of	water
with	a	particular	machine,	I	focus	on	the	symptoms	and	what	I	want	to	be	able	to	do.	That	is,	what	is	the	malfunction
preventing	me	from	accomplishing?	This	kind	of	formulation	sticks	to	what	you	know	and	clarifies	your	end	goal	for
the	technician:	“The	water	in	the	hot	tub	is	cold.	I	want	it	101°	F	like	it	was	last	week,	so	I	can	throw	a	party.”
Including	the	overarching	goal	in	your	problem	description	is	critical	because	it	really	doesn’t	matter	what	is	broken
and	what	is	fixed:	if	the	end	result	doesn’t	put	the	hot	back	in	hot	tub,	you’re	not	going	to	be	satisfied!

Go	With	The	Flow

Reaching	out	for	help	sometimes	means	interacting	with	a	customer	service	agent	in	a	faraway,	exotic	land	(like
Texas).	You	need	to	cultivate	kindness	and	patience	for	these	frequently	frustrating	encounters,	where	all	you	want	is	to
talk	to	someone	who	understands	your	problem.	But,	there	are	ways	you	can	make	these	interactions	useful,	even	if
the	person	you’re	talking	to	is	struggling	to	help.	You	may	have	heard	the	expression,	“Just	the	facts,	ma’am.”	This	was
television	detective	Sgt.	Joe	Friday’s	famous	admonition	to	his	interviewees,	a	call	to	forgo	opinions	and	focus	on	hard
evidence.	The	problem	is	that	there	are	an	infinite	number	of	facts	you	could	relate	to	someone	about	a	particular
broken	machine:	its	technical	specifications,	make,	model,	serial	number,	when	you	bought	it	and	from	whom,	its
operational	record,	repair	history,	recent	changes	to	its	environment,	others	things	that	might	be	wrong	with	it,	etc.	Any
of	these	facts	might	be	relevant,	but	then	again	they	might	not.	Contacting	an	expert	is	useful	because	they	know
more	about	which	facts	are	relevant	and	which	are	not.	You	may	think	you’re	being	helpful	by	passing	along	a	hidden
nugget	that	will	crack	the	case	wide	open.	However,	for	every	time	I’ve	pointed	out	something	useful,	I	can	think	of
another	example	where	my	instincts	about	the	relevant	facts	were	completely	wrong.	In	those	cases,	my	well-
intentioned	ramblings	were	actually	a	distraction	to	the	technician’s	fault-finding	process.

Therefore,	if	I’m	going	to	put	myself	in	the	hands	of	experts,	I	like	to	learn	what	 they	think	are	the	relevant	facts.	I	do
this	by	letting	them	guide	the	investigation	process.	Even	when	I’m	dealing	with	someone	who	I	think	is	reading	from	a
script,	I	like	to	give	them	the	benefit	of	the	doubt	and	let	them	lead	(at	first).	If	I	find	myself	driving	the	interaction,	I	fall
back	to	symptoms	and	goals:	“the	machine	is	doing	X,	and	is	preventing	me	from	doing	Y.”	Of	all	the	facts,	these	are
the	most	important.	Keeping	an	eye	on	the	end	goal	also	opens	the	door	to	alternatives:	just	by	saying	your	purposes
out	loud,	your	mind	will	start	looking	for	workarounds.

You	might	be	tempted	to	blow	off	a	scripted	response	to	your	problem,	but	I	suggest	you	go	with	the	flow	instead.	If
you’re	against	scripts,	then	you’re	also	against	things	like	troubleshooting	trees,	which	are	essentially	the	same	thing.
Sure,	customer	service	scripts	are	designed	for	the	“lowest	common	denominator,”	but	that	frequently	is	you.	When	it
comes	to	machine	problems,	be	wary	of	thinking	that	you	are	a	beautiful	or	unique	snowflake.	I’ve	often	been
surprised	at	the	number	of	times	my	issue	has	been	resolved	by	executing	the	scripted	advice	during	one	of	these
sessions.	When	asked	to	verify	something	you	think	is	obvious,	you	may	be	tempted	to	scream	“This	is	foolish,	I	want
the	advanced	techniques!	I	think	the	problem	is	related	to…um…wait…sorry,	it	actually	wasn’t	plugged	in.	Thanks.”

Even	if	canned	scripts	delivered	by	a	underpaid	cubicle	dweller	fail	to	deliver	a	solution,	just	having	a	conversation
about	your	problem	can	lead	you	to	the	promised	land.	There’s	something	magical	that	happens	when	you’re	forced	to
communicate	the	ideas	in	your	head.	It	seems	strange,	but	I’ve	figured	out	the	causes	of	problems	just	by	explaining
them	to	others.	I	don’t	have	a	peer-reviewed	academic	study	to	offer	on	this	point,	so	I’ll	just	speculate	why	this
happens.	To	start	with,	having	to	explain	something	to	someone	else	gets	you	out	of	your	head	and	shifts	your	focus
externally	(to	the	understanding	of	the	other	person).	Next,	telling	the	“story”	of	your	breakdown,	from	beginning	to
end,	exposes	the	holes	in	your	knowledge.	If	it’s	not	clear	why	A	→	B	→	C,	it’ll	be	even	more	apparent	when	you
attempt	to	communicate	it.	Have	you	ever	started	to	explain	something	you	felt	very	sure	of,	only	to	realize	mid-way
through	that	you	don’t	quite	understand	it	after	all?	It	often	takes	saying	things	out	loud	to	trigger	these	discoveries	of
what	is	uncertain.	Finally,	I	mentioned	the	power	of	“stupid”	questions	to	facilitate	breakthroughs	in	“A	Different	Point
Of	View.”	Often,	when	it	comes	to	interacting	with	Customer	Service,	if	you	want	those	good	“stupid”	questions,	you
can	have	’em	by	the	truckload!

Before	Talking	With	Customer	Service

Even	though	I’ve	pointed	out	many	positives,	I’m	not	giving	a	blanket	endorsement	to	always	pursuing	aid	from
Customer	Service.	Getting	outside	help	is	a	strategy	like	any	other,	and	therefore	must	rise	to	the	top	versus	all	the
other	alternatives.	As	always,	Opportunity	Costs	should	be	considered:	what	else	could	you	be	doing	with	your	time?
While	I’ve	shown	that	interacting	with	Customer	Service	can	frequently	be	useful	(even	if	unintentionally),	it	still	must
meet	the	standard	of	being	the	best	strategy	in	your	universe	of	possibilities.

Talking	About	Your	Problems	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 233

http://www.dallasnews.com/business/columnists/mitchell-schnurman/20130805-call-centers-now-a-bright-spot-in-employment-picture.ece
http://en.wikipedia.org/wiki/Joe_Friday
https://artoftroubleshooting.com/2013/02/26/troubleshooting-trees/
https://artoftroubleshooting.com/2013/03/01/where-do-i-begin/
https://artoftroubleshooting.com/2012/02/19/a-different-point-of-view/

Initiating	contact	with	outside	help	has	overhead:	in	addition	to	consuming	time,	some	companies	will	charge	you	to
speak	with	their	support	teams.	That’s	why	I	like	to	push	my	investigation	to	the	point	just	before	the	onset	of	severe
diminishing	returns.	Recognizing	where	this	happens	is	a	judgement	call.	Now,	I	have	a	good	feel	for	where	this	line
is:	it’s	usually	after	all	of	the	“basics”	have	been	tried	and	I’ve	entertained	(and	shot	down)	some	more	exotic	theories.
Talking	with	Customer	Service	can	be	a	welcome	change	of	pace	when	you’ve	hit	a	plateau	like	this.	Just	like	taking	a
walk	around	the	block,	these	interruptions	can	be	a	useful	distraction.

Finally,	I	always	like	to	have	my	ducks	in	a	row	before	calling	for	help.	A	good	description	of	the	problem.	Check.	A
series	of	steps	that	replicates	the	problem	reliably.	Always	helpful.	The	better	prepared	you	are	when	seeking	outside
help,	the	more	likely	the	interaction	will	lead	to	a	speedy	resolution.

Photo	op!	Imagine	describing	this	scene	over	the	phone:	“Yeah…there’s	a	bunch	of	pipes…connected	to…
other	pipes.”

(image:	Victor	Camilo	/	CC	BY-ND	2.0)

Picture	Perfect

I	named	this	piece	“Talking	About	Your	Problems”	for	a	reason:	to	highlight	the	pitfalls	associated	with	verbalizing
technical	troubles.	In	addition	to	the	ideas	above,	you	should	practice	the	methods	presented	in	“Skillful
Questioning”	to	become	a	truly	proficient	language	detective.	That’s	great,	but	seize	the	opportunity	to	do	an	end-run
around	words,	bypassing	these	problems	entirely.	Any	time	there’s	a	decision	to	be	made	between	talking	about
evidence	and	presenting	evidence	directly,	always	choose	the	latter.

In	the	world	of	fiction	writing,	there’s	a	concept	called	the	“omniscient	narrator.”	This	is	a	point-of-view	the	author
writes	from	that	has	access	to	all	the	events	and	dialogue	within	the	story.	Jumping	from	scene	to	scene	or	telling	the
reader	what	is	going	on	inside	a	character’s	head	requires	this	God-like	power.	When	it	comes	to	reporting	problems	to
a	fellow	troubleshooter,	you	are	the	narrator.	Unlike	Charles	Dickens	or	Ernest	Hemingway,	your	narration	skills	might
be	lacking,	so	save	them	for	that	brilliant	screenplay	you’re	writing.	Of	course	you	must	speak,	but	always	supplement
your	words	with	primary	sources	when	you	are	able.	Show	them	pictures	of	the	failure,	have	them	read	the	relevant
documents,	or	take	them	on-site	so	they	can	conduct	their	own	inspection.

Phone-based	technical	support	is	particularly	vulnerable	to	the	unreliable	narrator	problem.	I’ve	helped	a	lot	of	people
over	the	phone,	and	so	I	know	that	a	photo	(or	screenshot,	when	giving	IT	help)	can	be	the	quick	path	to	a	solution.
When	I	was	green,	I	would	sometimes	think	to	ask	for	a	photo	only	after	a	long	and	winding	conversation	that	was

Talking	About	Your	Problems	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 234

http://www.flickr.com/photos/victorcamilo/6262358188/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
https://artoftroubleshooting.com/2011/10/04/skillful-questioning-part-1/

going	nowhere.	Seeing	the	evidence	first-hand	was	stunning	and	it	was	interesting	to	compare	it	to	what	was	actually
related	by	the	“narrator”	during	our	talk.	Often,	a	key	detail	was	misspoken	(or	misheard	by	me)	at	the	outset,	taking
my	questioning	nowhere.	Or,	the	person	focused	most	of	their	description	on	an	irrelevant	part	of	the	machine	(not
that	it	was	their	fault,	if	they	knew	what	was	relevant	they	wouldn’t	have	needed	my	help).	These	problems	melt	away
when	you	can	put	the	actual	evidence	directly	into	the	hands	of	someone	trying	to	help	you.	There’s	a	reason	everyone
knows	the	saying	“a	picture	is	worth	a	thousand	words.”

References:

Header	image:	Harris	&	Ewing,	photographer.	Telephone	Machinery?	United	States,	1925.	[Photograph]	Retrieved
from	the	Library	of	Congress,	https://www.loc.gov/item/2016894321/.

Talking	About	Your	Problems	was	originally	published	June	21,	2013.

Notes:

Talking	About	Your	Problems	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 235

https://www.loc.gov/item/2016894321/

Starting	Over:	Rebuilding	And	Reinstalling

I	love	Larry	Wall's	quote	about	being	lazy.	Lazy	in	the	right	way.	I	think	that	applies	to	coding	in	general	and
troubleshooting	for	me	is	often	troubleshooting	code.

I	do	a	lot	of	triaging:	“How	important	is	this?”	You're	never	going	to	get	everything	perfect.	Sometimes,	it	doesn't
matter	if	you	didn't	name	the	printer	quite	right...and	sometimes	it's	time	to	reinstall	everything	from	scratch	so
you	get	a	perfect	system.	But	knowing	the	difference	between	those	two	is	the	Art	of	Laziness.

Karl	Kuehn

You’ll	recall	that	the	standard	troubleshooting	exercise	has	2	steps:

1.	 Identifying	the	problem
2.	 Executing	the	fix

This	simple	problem-solving	model	is	useful	because	a	mature	understanding	of	these	two	steps	leads	to	the	possibility
of	forgoing	either	one.

Less	and	less	do	you	need	to	force	things,
until	finally	you	arrive	at	non-action.
When	nothing	is	done,

Starting	Over:	Rebuilding	And	Reinstalling	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 236

nothing	is	left	undone.

Tao	Te	Ching	(verse	48)	1

Learning	to	refrain	from	harmful	or	inefficient	action	is	a	difficult	skill	to	cultivate,	but	it	separates	the	amateur	from	the
Troubleshooter.	Not	every	malfunction	can	be	fixed	with	a	wrench,	nor	with	money,	and	there	are	conundrums	which
are	best	left	alone	and	worked	around	instead.

When	it	comes	to	the	value	of	non-action,	I’ve	discussed	several	strategies	that	allow	you	to	be	ignorant	of	a
malfunction’s	specific	cause,	effectively	skipping	step	#1.	Many	solutions	do	not	require	that	you	understand	the	why
behind	the	failure.	Under	this	banner	we	include	strategies	like	the	restart	and	“shotgunning”	(replacing	several
components	at	once).	While	the	restart	often	works,	when	it’s	chosen	in	lieu	of	an	investigation,	the	technique
illuminates	little	about	the	origin	of	a	problem.	In	effect,	it’s	a	substitution	that	favors	the	pragmatism	of	getting	back	to
work	over	furthering	your	understanding.

Likewise,	fixing	something	is	also	optional:	always	keep	in	mind	that	pursuing	step	#2	is	not	required.	Knowledge
gained	during	the	problem	discovery	phase	may	show	that	a	repair	would	be	too	slow,	too	costly,	or	perhaps	even
impossible.	These	scenarios	provide	the	rationale	for	choosing	to	replace	a	failed	machine	instead	of	fixing	it.	Or,	even
better,	you	discover	a	workaround	or	optimization	that	completely	obsoletes	the	failed	component.	That	is,	neither
repairing	nor	replacing,	but	instead	reconfiguring	a	particular	workflow	to	do	without.

With	these	concepts	in	mind,	let’s	go	all	the	way	down	the	path	of	blissful	ignorance.	Within	the	context	of	repair,	a
strategy	that	chooses	to	avoid	costly	knowledge	in	favor	of	expediency	is	starting	over.	Let’s	examine	the	costs	and
benefits	in	both	the	digital	and	analog	realms.

The	Price	Of	Knowledge

I’ve	previously	discussed	repair	as	the	movement	between	the	current	broken	state	back	to	an	ideal	operational	one.
However,	when	making	this	transition,	troubleshooters	often	rely	on	the	natural	advantage	conferred	by	the	nearly-
working	state	of	a	recently	broken	machine.	If	a	car	stopped	running	just	yesterday,	or	you	were	able	to	send	an	email
5	minutes	ago	(but	not	now),	then	it’s	likely	that	you	are	looking	for	just	a	single	problem	to	fix.

In	my	experience,	this	is	the	core	of	troubleshooting:	looking	for	that	lone	thing	that	is	preventing	a	machine	from
working.	The	nature	of	the	almost	working	machine	leads	to	a	bias	for	minimalism	in	your	repairs,	and	also	to	the	key
principle	of	Change	Just	One	Thing	At	A	Time.

While	repair	may	be	an	attempt	to	restore	a	machine	back	to	the	manufacturer’s	ideal,	we	typically	stop	work	much
sooner	than	that,	choosing	instead	to	focus	on	whether	the	machine	can	continue	doing	useful	work.	The	alternative
would	be	costly	madness:	to	be	absolutely	sure	that	a	machine	conformed	to	the	ideal,	you	would	need	to	check	every
single	component	for	correctness.

For	example:	if	your	car	won’t	start,	and	replacing	the	battery	makes	it	run	again,	you	don’t	then	check	every	screw,
spark	plug,	fuse,	hose,	and	weld.	Although	we	may	desire	to	know	that	everything	else	is	in	perfect	working	order,	the
price	of	that	knowledge	is	simply	too	high.	As	long	as	a	machine	is	meeting	our	needs,	we’re	often	quite	happy	to
infer	that	the	majority	of	the	components	are	okay.

The	Domestic	Deleter

The	digital	world	presents	a	different	set	of	tools	for	ensuring	the	correctness	of	a	system,	allowing	us	to	achieve	a
perfection	that	would	be	costly	and	repetitive	in	the	analog	world.	It	also	means	that	starting	over	can	be	a	viable
problem-solving	recipe.

To	illustrate,	let	me	tell	you	a	story	from	the	trenches	of	IT.	While	I	was	looking	for	a	job	after	I	graduated	from	college,
I	did	some	freelance	consulting.	I	worked	with	a	number	of	small	businesses,	which	led	to	referrals	to	help	people	out
with	their	home	computers.	As	I	was	invited	into	these	people’s	homes	in	the	evening,	these	jobs	were	always	very
interesting.	During	these	house	calls,	not	only	did	I	get	a	chance	to	hone	my	tech	chops,	but	I	also	got	an	interesting
“slice	of	life”	view	into	the	local	community.

Starting	Over:	Rebuilding	And	Reinstalling	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 237

https://artoftroubleshooting.com/2011/12/21/defaults-and-reboots/
https://artoftroubleshooting.com/2013/06/04/repair-or-replace/
https://artoftroubleshooting.com/2013/05/17/how-is-it-supposed-to-work/
https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/

Unfortunately,	sometimes	it’s	best	to	start	over	(Waffle	House	Index	level:	Red).
(image:	Carol	M.	Highsmith	/	Library	of	Congress)

One	client	I	worked	with	had	that	perfect	blend	of	frustration	and	comedy	that	made	you	laugh	while	shaking	your	fist
at	the	heavens.	She	also	made	me	question	aspirations	I	had	about	turning	my	little	consulting	business	into	a	full-time
career;	after	this	episode,	I	kicked	my	job	search	into	high	gear.	At	first	glance,	this	woman’s	to-do	list	for	me	was
nothing	special:	installing	some	software,	troubleshooting	her	Internet	connection	(dial-up!),	etc.	However,	something
about	her	computer	was…strange.	I	hacked	away	in	vain	for	a	while	and	then	sat	her	down	for	a	little	Q&A.	We	had
the	following	conversation,	which	I	was	not	prepared	for:

Me:	“I	don’t	understand	what’s	going	on	with	your	computer.	It’s	very	unstable	and	I	think	files	are	missing…”

Client:	“Well,	whenever	I	come	across	a	file	and	I	don’t	know	what	it	does,	I	delete	it.”

Starting	Over:	Rebuilding	And	Reinstalling	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 238

http://www.popsci.com/article/science/how-waffle-house-became-disaster-indicator-fema
http://www.loc.gov/pictures/item/2010630838/

Me:	“What?!	That	must	happen	a	lot.”

Client:	“Not	really,	I’m	quite	busy	and	don’t	have	time	to	look	in	every	folder.”

Me:	“For	your	computer’s	sake,	that’s	a	relief.”

I	then	calmly	explained	why	her	“deleting	what	I	don’t	understand”	strategy	was	problematic.	Convinced	by	my	air-
tight	logic	(and	exasperated	tone),	she	promised	to	change	her	eradicating	ways.

But,	what	do	I	do	now?	What	exactly	did	this	lady	delete?	She	had	been	at	it	for	a	while	and	couldn’t	remember	which
folders	she	touched.	The	default	installation	of	a	modern	operating	system	can	include	hundreds	of	thousands	of	files.
Applications	can	easily	contribute	an	equal	number.	I	knew	the	work	required	to	figure	out	precisely	which	files	were
missing	would	be	beyond	tedious	(yes,	I	checked	the	“recycling	bin,”	but	she	was	thorough	in	her	efforts).	There	was
only	one	good	solution,	and	that	was	to	start	fresh.	So,	I	convinced	her	to	let	me	reinstall	Windows	from	scratch.

Reinstalling	an	operating	system	may	be	time-consuming,	but	it	requires	little	effort:	the	installer	does	all	the	hard	work
for	you.	Beyond	supplying	some	basic	information	like	your	language,	location,	and	keyboard	type,	it	takes	care	of	the
rest,	making	sure	that	all	those	files	end	up	in	the	right	place.	I	awkwardly	watched	TV	with	her	husband	and	the
family	dog	in	the	living	room	while	waiting	for	the	install	to	finish.

Husband:	“So,	you	want	a	beer?”

Me:	“Oh	no…”

Husband:	(shouting	to	the	next	room)	“Honey,	can	he	have	a	beer?!”

Client:	(shouting	back)	“No,	he’s	working	on	my	computer!”

Me:	“That’s	okay,	I’m	fine.”

Welcome	to	the	glamorous	world	of	IT.

How	far	do	you	take	deconstruction	and	choose	what	to	salvage?
(image:	Carol	M.	Highsmith	/	Library	of	Congress)

Starting	Over:	Rebuilding	And	Reinstalling	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 239

http://www.loc.gov/pictures/item/2010630054/

Levels	Of	Rebuilding

If	you’re	having	a	problem	with	your	refrigerator,	and	don’t	know	what’s	wrong,	it	would	be	folly	to	replace	every	part.
It	might	fix	the	problem,	but	pursuing	this	strategy	would	come	at	a	terrible	price	in	terms	of	time	and	materials.	In	the
digital	domain,	however,	the	costs	are	different.	Replacing	everything	might	be	expensive	for	a	refrigerator,	but	this	is
exactly	what	reinstalling	software	accomplishes.	The	nature	of	ones	and	zeros,	which	can	be	copied	perfectly	and
automatically	with	ease,	means	you	can	rebuild	something	from	scratch	with	just	a	keystroke.

In	the	abstract,	when	is	starting	over	a	good	option	for	repair?	We	need	the	following	conditions	to	be	present:

1.	 The	cost	of	problem	discovery	is	high.
2.	 A	machine	model	that	is	easy	to	replicate	or	enforce	correctness	upon.

You	can	see	that	my	situation	with	the	woman	who	liked	to	delete	files	fit	this	mold	perfectly.	Manually	figuring	out
which	files	were	missing	would	have	been	costly,	boring,	and	time-consuming.	I	wasn’t	about	to	move	in	and	become
a	regular	on	their	couch,	even	if	I	did	get	a	say	about	what	we	watched	on	TV	and	the	privilege	of	having	a	beer!	At	the
same	time,	Windows’	automated	installer	ensured	that	the	operating	system	could	be	restored	perfectly	and	with	little
effort,	fulfilling	the	second	requirement.

Examples	in	the	analog	world	are	harder	to	come	by:	that	is,	repair	situations	that	favor	wholesale	rebuilding	over
diagnosis.	A	Formula	One	racing	team	may	completely	rebuild	an	engine	after	only	500	miles	of	driving,	but	that’s
done	in	the	name	of	preventative	maintenance.	Purely	as	a	troubleshooting	strategy,	rebuilding	an	entire	physical
machine	from	scratch	is	typically	not	cost	effective	because	buying	a	replacement	or	skillfully	isolating	a	problem	using
logic	will	usually	win	the	cost	battle.	The	reason	why	gets	back	to	the	economics	of	troubleshooting:	repair	labor	is
simply	not	as	efficient	as	factory	labor.

What	is	relevant	to	both	the	digital	and	analog	worlds	is	that	you	have	a	decision	to	make	about	which	level	you	will
choose	to	rebuild.	Using	a	malfunctioning	computer	as	an	example,	you	could	start	over	at	any	of	these	various	levels:

Hardware
Filesystem
Operating	system
Applications
Configurations

In	terms	of	the	extent	of	the	rebuild,	these	are	listed	in	order	of	most-to-least,	with	each	level	being	inclusive	of	the
next.	If	you	reformat	your	disk	(filesystem	level),	then	you	must	also	reinstall	the	operating	system,	plus	applications,
which	subsequently	must	be	configured,	etc.	I’ve	done	rebuilds	at	each	of	these	levels,	depending	on	the	situation.

To	show	you	that	this	concept	is	universal,	we	could	also	make	the	same	type	of	list	for	rebuilding	a	house.	Imagine	a
home	that	was	damaged,	perhaps	in	a	storm	or	fire.	You	would	also	face	the	same	dilemma	about	which	level	to	begin
rebuilding:

Footings
Foundation
Framing
Plumbing/electrical/HVAC
Finish	work	(drywall,	trim,	etc.)

Just	like	in	the	computer	example,	going	from	top	to	bottom,	each	of	these	levels	is	inclusive	of	the	ones	below.
Rebuilding	from	the	footings	would	imply	that	everything	else	would	also	need	to	be	restored	as	well:	the	foundation,
framing,	plumbing/electrical/HVAC,	etc.

Because	the	scope	of	the	rebuild	expands	as	you	go	up	through	these	levels,	the	cost-effective	way	to	proceed	is	to	see
if	rebuilding	at	the	smallest	level	will	meet	your	needs.	In	our	computer	example,	that	would	be	to	consider	the	list	in
reverse	order:	Configurations	→	Applications	→	Operating	System	→	Filesystem	→	Hardware.	Indeed,	experience
confirms	this	tack:	refreshing	configuration	files	are	often	a	quick	fix	to	application	level	problems!

Starting	Over:	Rebuilding	And	Reinstalling	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 240

http://auto.howstuffworks.com/auto-racing/motorsports/formula-one2.htm
https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/

Nothing	in	your	way:	a	greenfield	project	has	no	prior	constraints.	Except	reality,	of	course…
(image:	Christian	Lendl	/	CC	BY	2.0)

Clean-Sheet	Innovation	And	Rebuilding…Trust

There’s	a	fine	line	between	engineering	and	troubleshooting,	so	a	rebuild	can	also	be	an	invitation	to	rethink	a
machine’s	design.	Especially	if	you’re	working	on	a	custom-built	system,	a	rebuild	is	an	opportunity	to	make
improvements	that	have	been	discovered	after	a	machine	has	been	in	use.	This	happened	all	the	time	in	my	software
career:	a	decision	to	remake	a	faulty	or	bottlenecked	component	opened	up	the	door	to	big	breakthroughs.	Rebuilding
is	a	great	way	to	free	yourself	from	the	constraints	of	prior	decisions,	which	were	made	in	a	different	context	that	likely
has	changed.

Finally,	there’s	one	more	aspect	of	rebuilding	that	transcends	optimization.	In	my	tenure	as	CTO,	I	managed	many
incidents	affecting	security:	from	virus	infections	on	employee	computers,	all	the	way	to	a	malicious	hacker	intrusion
that	nearly	bankrupted	the	company.	In	these	cases,	rebuilding	went	beyond	an	advantageous	troubleshooting	strategy
that	leveraged	the	automated	correctness	of	software.	Instead,	it	was	a	vital	bridge	that	got	us	back	to	a	system	we
could	trust.

References:

Header	image:	Harry	Dona,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/qz1DQ7sKxZE.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	48.

Starting	Over:	Rebuilding	And	Reinstalling	was	originally	published	October	19,	2014.

Notes:

Starting	Over:	Rebuilding	And	Reinstalling	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 241

http://en.wikipedia.org/wiki/Greenfield_project
https://www.flickr.com/photos/_dchris/5747907420
https://creativecommons.org/licenses/by/2.0/
https://unsplash.com/photos/qz1DQ7sKxZE.

Border	Lines

I'm	so	dependent	on	people	to	explain	what's	going	on,	to	get	to	the	bottom	of	a	problem.

Jeremy	Sheetz

In	the	garage	of	my	apartment	building	there’s	a	green	tag	hanging	from	the	phone	wiring	box.	It’s	one	of	those	things
that	I	see	every	day	while	driving	in	and	out	of	my	parking	space,	part	of	the	myriad	stimuli	that	enters	my	awareness
and	immediately	exits	again.	When	taking	the	trash	out	the	other	day,	it	caught	my	attention	again,	and	so	I	decided	to
finally	see	what	it	was.	I	flipped	it	over	and	saw	big	letters	that	read:

“MPOE”

For	a	moment,	I	wistfully	stared	off	into	the	distance	and	channeled	Obi-Wan	Kenobi:	“MPOE.	Now,	that’s	a	name	I’ve
not	heard	in	a	long	time…	A	long	time.”	Walking	back	upstairs,	I	had	flashbacks	to	some	of	the	epic	telecom	battles
I’ve	fought	over	the	years.	The	more	I	thought	about	it,	the	more	I	realized	that	the	MPOE	represents	a	critical	concept
for	the	Troubleshooter.

Border	Lines	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 242

Assigning	responsibility:	on	which	side	of	this	dividing	line	does	the	problem	lie?
(image:	Wikijimmy	/	Wikimedia	Commons)

The	Handoff

If	you	aren’t	familiar,	MPOE	stands	for	“minimum	point	of	entry.”	For	a	telecom	company,	it’s	the	end	of	the	line,	the
official	point	where	their	network	terminates	and	a	customer’s	begins.	This	“line	in	the	sand”	is	critical	because	it
creates	a	clean	and	predictable	way	to	assign	responsibility	when	a	problem	arises.

If	you’ve	ever	had	a	telecom	technician	visit	your	home	or	business,	they	likely	want	to	start	their	investigation	outside,
at	the	MPOE.	Testing	to	see	if	the	network	works	up	to	this	demarcation	point	is	a	play	straight	out	of	“follow	the
chain.”	Inserting	a	probe	where	a	line	enters	a	customer’s	premises	attempts	to	answer	the	question:	“Is	the	problem
upstream	or	downstream	from	this	point?”	Answering	this	question	leads	to	some	very	useful	information.

If	the	network	is	not	working	at	the	MPOE,	the	implication	is	obvious:	the	problem	lies	somewhere	within	the	telecom
company’s	domain.	This	is	the	tactic	of	isolation	in	action!	Note	too	that	testing	at	the	demarcation	point	also	allows
proper	responsibility	to	be	assigned:	the	customer	isn’t	expected	to	either	find	or	pay	for	problems	that	originate	within
a	provider’s	system.

Conversely,	if	everything	up	to	and	including	the	MPOE	is	in	working	order,	then	the	conclusion	is	also
straightforward:	the	problem	must	be	somewhere	within	the	client’s	infrastructure.	If	you’re	a	customer,	it	would	be
bizarre	to	be	given	a	hard	hat	and	asked	to	get	in	a	cherry	picker	to	help	troubleshoot	AT&T’s	network.	Of	course,	the
reverse	is	also	true:	unless	you	pay	them,	AT&T	shouldn’t	have	to	chase	down	problems	with	the	wiring	inside	your
home	or	business.	That’s	your	responsibility.

The	MPOE	is	an	interesting	entity	because	this	junction	is	much	more	than	technical:	that	box	hanging	on	the	outside

Border	Lines	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 243

http://commons.wikimedia.org/wiki/File:Network_interface_device_ameritech.jpg
http://en.wikipedia.org/wiki/Demarcation_point
https://artoftroubleshooting.com/2011/11/08/follow-the-chain/
http://en.wikipedia.org/wiki/Cherry_picker

of	your	house	is	a	boundary	marker	with	social,	legal,	and	business-related	dimensions.	The	decision	to	troubleshoot	is
good	for	your	personal	development	precisely	because	it	forces	you	to	understand	and	engage	whatever	and
whomever	lies	on	the	other	side	of	these	dividing	lines.

Some	borders	are	wide	open…
(image:	Swedish	National	Heritage	Board)

Border	Crossings

Borders	have	always	fascinated	me.	When	I	was	young,	we	did	a	fair	amount	of	driving	around	the	good	ol’	USA	on
family	road	trips.	I	distinctly	remember	being	confused	when	crossing	between	states.	A	sign	saying	“Welcome	To	The
State	Of	X…”	would	pass	by,	but	the	view	would	remain	largely	the	same.	I	guess	I	was	expecting	the	landscape	to
change	drastically,	so	much	that	the	dividing	line	would	be	visually	apparent.	Sometimes,	I’d	miss	the	sign	and	only
realize	I	was	in	a	different	state	hours	later.

Maybe	my	disappointment	also	stemmed	from	those	cartoon	maps	that	they	make	for	kids,	the	ones	where	every	state
has	an	icon	representing	what	it’s	known	for:	a	potato	on	Idaho,	a	car	on	Michigan,	etc.	Is	it	any	wonder	I	was
disappointed	after	crossing	these	borders,	only	to	find	that	Texas	wasn’t	awash	in	a	sea	of	barbecue	sauce	or	that
Wisconsin	wasn’t	made	of	cheese?

I	also	remember	visiting	Nogales,	Arizona	and	Nogales,	Sonora	when	I	was	growing	up.	These	conjoined	cities
straddle	the	USA/Mexico	border.	To	my	naive	mind,	this	transition	was	mind-blowing:	we	had	walked	just	a	few
minutes	and	suddenly	everyone	was	speaking	a	different	language!

As	a	broad	concept,	recognizing	where	entities	meet	and	transition	is	crucial	to	navigating	the	world.	Because
interesting	things	often	happen	at	these	dividing	lines,	the	implications	are	rich	for	the	Troubleshooter.	If	you	fix	things
long	enough,	you	will	eventually	have	to	negotiate	the	following	types	of	boundaries:

Contractual:	this	is	where	you	can	see	where	the	problem	lies,	but	the	 responsibility	for	fixing	it	belongs	to
someone	with	whom	you	have	a	standing	agreement.	The	example	of	the	MPOE	neatly	illustrates	this	division:	you
pay	the	phone	company	every	month	with	the	expectation	that	they	will	provide	a	working	service	up	to	this
boundary	marker.	Just	like	they	will	happily	terminate	your	account	for	non-payment,	you	too	must	demand	that
they	uphold	their	end	of	the	deal.	In	that	sense,	you	don’t	ever	“fix”	the	phone	company’s	technical	problems,
except	by	enforcing	the	letter	of	your	pact.
Business	Relationship:	this	is	often	the	flip	side	of	the	contractual	dimension,	where	the	maintenance	of	goodwill
demands	you	fix	something	that	is	clearly	not	your	responsibility.	This	is	an	incursion	into	your	sovereign	territory,

Border	Lines	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 244

file:///Users/jasonmaxham/Library/CloudStorage/Dropbox/JGM/Art%20of%20Troubleshooting/book/v3/img/52b876d970885d062d2637bbd2359bcf7d63d835fd0ddc829eec517e0a260139
https://www.flickr.com/photos/swedish_heritage_board/6332030472/
http://blog.wallpops.com/wp-content/upLoads/2013/05/WPE0623.jpg

but	one	that	needs	to	be	tolerated.	We	used	to	get	on	the	phone	all	the	time	to	help	our	clients	ingest	the	data	we
produced,	often	troubleshooting	their	systems	along	the	way.	This	wasn’t	necessarily	contractually	mandated,	but
everything	is	on	the	table	for	the	Big	Client.
Organizational:	this	is	the	case	where	a	problem	is	internal	to	your	organization,	but	fixing	it	requires	resources
outside	your	local	sphere	of	influence.	Instead	of	turning	a	wrench,	these	repairs	require	the	tools	of	advocacy,
seeking	out	those	who	have	the	power	to	help	you	and	convincing	them	that	they	should.
Legal:	just	because	you	can	fix	it,	doesn’t	mean	the	law	allows	you	to	do	so.	Some	repairs	can	bring	up	interesting
legal	questions,	like	those	involving	reverse	engineering.	You	may	have	signed	an	agreement	that	prevents
tinkering,	as	with	many	closed	source	software	products.	The	bottom	line	is	that	if	you	don’t	own	it,	fixing	it	may
require	permission.
Social:	people	can	get	territorial	about…well,	pretty	much	anything	(see	also:	Milton’s	 red	stapler	from	Office
Space).	If	you’re	cavalierly	fixing	problems	in	someone	else’s	domain,	there	can	be	social	repercussions.

…and	others	are	vigorously	defended.
(image:	U.S.	Army	/	Wikimedia	Commons)

Border	Skirmishes

When	I	was	CTO	of	Discovery	Mining,	all	these	boundary	types	came	together	during	my	epic	struggle	to	procure	a
high-speed	data	line	connecting	our	office	in	the	Presidio	of	San	Francisco	to	one	of	our	colocation	facilities	in
Bayview	(about	6	miles	away	as	the	crow	flies).	Getting	this	point-to-point	circuit	installed	and	tested	was	a	series	of
maddening	Kafkaesque	vignettes	that	took	me	through	a	full	range	of	emotions:	optimism,	confusion,	anger,	despair,
numbed	indifference,	and	finally	anti-climatic	triumph.

From	start	to	finish,	it	took	me	11	months	to	coordinate	the	installation	of	this	line.	 11	months.	I	thought	about	it	every
day	during	that	period.	This	lengthy	outcome	was	a	severe	violation	of	my	expectations,	given	that	I	had	seen	the
snazzy	marketing	page	on	the	telecom	provider’s	website	promoting	the	product.	They	made	it	seem	like	this	was	just
something	you	ordered	and	then	it	arrived	shortly	thereafter,	like	getting	a	pizza	delivered.	Unfortunately,	“layer	2
metropolitan	gigabit	ethernet	connection”	was	not	on	Domino’s	menu,	or	I	would	have	gladly	ordered	it	from	them
instead.

The	cast	of	characters	in	my	saga	included	a	major	telecom	firm,	a	federal	agency,	a	state	regulatory	commission,	the
Border	Lines	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 245

http://en.wikipedia.org/wiki/Reverse_engineering
http://en.wikipedia.org/wiki/Proprietary_software
https://www.youtube.com/watch?v=uVD3KPUnKHk
file:///Users/jasonmaxham/Library/CloudStorage/Dropbox/JGM/Art%20of%20Troubleshooting/book/v3/img/06ddd21523ffe0caf7b814c142563540713da7b39ffe2d4279182e4c9ef9bbfc
http://en.wikipedia.org/wiki/Berlin_Crisis_of_1961
http://commons.wikimedia.org/wiki/File:US_Army_tanks_face_off_against_Soviet_tanks,_Berlin_1961.jpg
http://www.presidio.gov/

building	owner	of	the	colocation	facility,	another	company	that	we	were	sub-leasing	space	from,	our	Internet	service
provider	(ISP),	and	us.	Did	I	miss	anyone?	Within	this	group	was	a	tangled	web	of	business,	legal,	and	technical
relationships.	In	retrospect,	half	the	battle	was	just	figuring	out	who	had	jurisdiction	to	make	a	particular	decision.
Some	territory	was	aggressively	controlled	while	ironically,	in	other	situations,	it	was	nearly	impossible	to	figure	out
who	was	in	charge	and	could	move	my	project	along!

Witnessing	the	little	skirmishes	between	these	various	entities	as	they	asserted	control	over	their	territories	was	eye-
opening.	For	example,	take	the	meet-me-room,	where	our	circuit	was	to	be	handed	off	from	the	telecom	firm	to	our
ISP.	At	the	time,	they	were	embroiled	in	a	dispute	with	the	colocation	building	owner	over	cross-connect	fees	and	they
absolutely	refused	to	pay	to	connect	our	new	line.	It	was	a	standoff	that	lasted	for	several	weeks	and	neither	side
would	budge	on	their	demands.	Also,	getting	this	circuit	somehow	triggered	a	review	of	the	contract	by	the	California

Public	Utilities	Commission.	Weeks	lost	there	too.

Although	this	line	required	a	fairly	simple	physical	connection	(strands	of	fiber	optic	cable	from	point	A	to	B),	mostly
already	existing,	the	route	unfortunately	snaked	through	all	these	various	fiefdoms.	Some	of	these	regimes	were
sympathetic	allies	and	others	were	hostile	territory.	Not	all	travel	looks	like	a	photo	shoot	from	an	issue	of	Condé	Nast.

During	this	frustrating	process,	there	were	also	social	boundaries	that	I	could	and	could	not	cross.	Since	I	was	paying
them,	I	could	justify	laying	into	our	ISP	for	chronic	mismanagement	of	the	project	and	lack	of	communication	about
what	was	happening.	So,	I	did.

On	the	other	hand,	getting	fiber	pulled	to	our	office	building	was	dependent	on	the	whim	of	inaccessible	bureaucrats
with	whom	I	had	little	influence.	It	was	a	mighty	struggle	getting	them	to	answer	any	form	of	communication	(phone
messages,	emails,	smoke	signals,	etc.),	with	weeks	sometimes	lapsing	between	responses.	With	those	people,	it	was
cheerful	and	patient	persistence	at	every	turn,	as	I	could	never	afford	to	be	publicly	angry	with	them.

Even	after	the	circuit	was	turned	up,	we	spent	a	few	more	months	troubleshooting	problems	discovered	by	actually
using	it!	There	was	one	particularly	embarrassing	rollback	that	I	had	to	stomach;	it	occurred	after	a	failed	switchover
rained	down	chaos	on	our	operations.	That	was	the	beginning	of	my	education	in	networking	arcana,	with	a	deep-dive
into	the	meaning	of	the	three	letters	M-T-U.

Flipping	the	switch	to	fully	utilize	our	new	line	for	actual	business	was	a	day	I’ll	long	remember.	It	occurred	 399	days
after	my	first	enquiry.	Who	would	have	thought	that	ensuring	a	clear	and	stable	path	along	a	tiny	sliver	of	glass,	nearly
weightless,	would	have	been	so	difficult?

Bon	Voyage!	Remember	Your	Passport.

In	life	and	business,	we	often	rely	on	systems	that	are	beyond	our	direct	control.	To	get	help,	repair	will	involve	trips	to
neighboring	territories.	Leaving	your	immediate	locus	of	control	requires	human	skills	because	your	influence
diminishes	as	you	cross	these	border	lines.

References:

Header	image:	Jones,	Suzi.	Fence	with	Smooth	Wire.	1978.	July.	Photograph.	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/ncr000222/.
	

Border	Lines	was	originally	published	November	22,	2014.

Notes:

Border	Lines	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 246

http://en.wikipedia.org/wiki/Meet-me-room
http://www.cntraveler.com/
http://en.wikipedia.org/wiki/Maximum_transmission_unit
https://www.loc.gov/item/ncr000222/

If	You	Have	To	Force	It,	Something	Is	Probably
Wrong

The	lessons	you	learn	best	are	the	ones	that	hurt	the	most.

Jamie	Karrick

I	like	to	wander	around	the	motorcycle	club	I	belong	to,	observing	and	sometimes	helping	the	other	members	with
their	projects.	A	second	set	of	eyes	or	hands,	along	with	a	“dumb”	question	or	two,	often	helps	to	get	someone	going
again	when	they	are	stuck.	During	these	fix-it	sessions,	the	repair	principles	I’ve	written	about	are	brought	to	life	and
new	ones	are	always	bubbling	up	to	the	surface.

Take	a	recent	session,	where	a	fellow	member	had	brought	in	his	Yamaha.	Out	of	the	corner	of	my	eye,	I	saw	him
carefully	remove	a	substantial	portion	of	the	front	fairing.	You	can	usually	tell	when	someone	has	hit	a	roadblock,
either	by	the	swearing,	or	the	confused	look	on	their	face	as	they	stare	blankly	at	the	parts	strewn	about	them.	I	could
see	this	guy	was	struggling	with	whatever	he	was	doing,	and	so	I	meandered	over	to	see	if	I	could	help.

If	You	Have	To	Force	It,	Something	Is	Probably	Wrong	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 247

http://www.pistonandchain.com/

“When	in	doubt,	get	the	hammer	out”	is	great	advice—except	when	it’s	not.
(image:	Esther	Bubley	/	Library	of	Congress)

He	explained	that	he	was	trying	to	get	into	the	assembly	that	held	the	two	headlights,	so	he	could	replace	a	burned-out
bulb.	The	clips	that	held	the	plastic	enclosure	were	difficult	to	pry	open,	so	we	tried	successively	larger	screwdrivers
and	corresponding	amounts	of	force.	However,	the	clamshell	assembly	would	not	yield	to	our	efforts.

Whenever	I’m	assisting	on	someone	else’s	bike,	I’m	a	bit	more	careful	than	if	it	were	my	own.	If	there	is	a	risk	of
breaking	something,	from	a	wrench	turned	too	far	or	the	misplaced	strike	of	a	hammer,	I	figure	that’s	their	decision	to
make.	They	must	deal	with	the	consequences	and	I	can	just	walk	away,	so	they	need	to	be	in	the	driver’s	seat	at	those
critical	moments.	It	seemed	like	we	were	getting	to	that	point,	so	I	paused	and	said	“This	is	hard…Yamaha	really	made
it	difficult	to	change	a	stupid	lightbulb.	Are	you	sure	this	is	how	to	get	in	there?”	The	owner	voiced	his	agreement	and
took	a	step	back	to	reconsider.	If	we	stayed	on	our	current	course	of	action,	the	next	logical	step	would	be	to	apply
forces	that	would	break	the	plastic	housing.

I	stepped	away	to	get	a	drink,	and	when	I	returned	a	few	minutes	later	he	had	solved	the	problem.	The	owner	of	this
Yamaha	had	mistakenly	thought	that	the	lightbulbs	were	to	be	replaced	from	the	front.	However,	they	were	supposed
to	be	accessed	from	the	rear.	The	smart	engineers	at	Yamaha	had	even	provided	an	easy-to-remove	cover	for	this
purpose	(as	if	they	anticipated	this	very	problem!).	With	this	pivotal	discovery,	just	a	few	minutes	later	the	lightbulb
had	been	replaced.	Now,	all	that	was	left	was	to	rebuild	the	front	part	of	the	bike.	Frustrated	at	the	time	wasted,	he
lamented:	“I	knew	it	shouldn’t	be	that	difficult!”

Forcing	It

If	You	Have	To	Force	It,	Something	Is	Probably	Wrong	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 248

http://www.loc.gov/pictures/item/owi2001035994/pp/

Rushing	into	action,	you	fail.
Trying	to	grasp	things,	you	lose	them.
Forcing	a	project	to	completion,
you	ruin	what	was	almost	ripe.

Tao	Te	Ching	(verse	64)	1

As	I	reflected	on	this	particular	fix-it	drama,	my	mind	flashed	images	of	the	many	times	that	I	had	forced	something,
along	with	the	mixed	results.	In	life,	many	rewarding	things	we	do	are	hard,	taking	copious	amounts	of	effort.	To	say
“don’t	do	anything	that	is	difficult,”	would	be	to	cut	out	a	path	that	has	led	humanity	to	many	glorious	triumphs.
However,	repair	has	a	special	relationship	to	the	application	of	brute	force.	You	can’t	rule	out	its	use,	but	it	should	be
marshaled	with	caution.	I	also	began	to	think	about	what	should	be	hard	about	troubleshooting,	and	how	that	differs
from	neighboring	fields	like	engineering	and	invention.

First,	we	need	to	think	about	the	nature	of	repair	and	its	position	at	the	end	of	the	chain	of	invention	→	engineering	→
manufacturing.	As	a	general	rule,	the	amount	of	wasted	and	forced	effort	decreases	as	you	go	down	this	chain;
also,	what	is	difficult	about	each	stage	is	dramatically	different.	Think	about	Edison’s	search	for	a	suitable	lightbulb
filament:	before	trying	Japanese	bamboo,	his	team	laboriously	rejected	over	1600	candidates!	Edison	was	speaking
from	deep	experience	when	he	talked	about	the	“99%	perspiration”	part	of	creation.	As	inventors	desire	to	prove	their
ideas	by	building	working	prototypes	(and	fixing	them	when	they	break),	they	experience	a	microcosm	of	the	hardships
endured	by	engineers,	manufacturers,	and	troubleshooters.	Propelling	yourself	from	a	moment	of	inspiration	to	a
working	example	requires	resolution	of	all	the	problems	along	this	entire	chain.

Engineers	have	their	problems	too,	but	at	least	the	burden	of	initially	proving	that	a	particular	idea	will	be	feasible	is
not	among	them.	Instead,	they	can	build	upon	the	discoveries	of	scientists	and	inventors	by	making	certain
assumptions:	that	an	airfoil	will	create	lift,	that	copper	wires	will	carry	electric	current,	etc.	You’d	think	that	would
make	their	jobs	easy,	but	engineers	are	asked	to	deploy	these	existing	ideas	in	new	contexts.	Will	this	airfoil	provide
enough	lift	to	get	this	particular	airplane	off	the	ground?	Will	this	copper	wire	be	 sufficient	to	carry	a	specific	amount	of
current	from	the	breaker	panel	to	the	outlet?	This	frustrating	intersection	between	the	known	and	unknown	is	what
makes	engineering	hard.

Manufacturers	and	builders	take	the	fruits	of	inventors	(via	engineers)	and	attempt	to	replicate	their	designs
economically.	They	aim	to	take	abstract	designs	and	put	them	in	the	hands	of	your	everyday	consumer.	Discovering
and	translating	Machine	Models	into	useful	product	concepts	may	be	outside	their	purview,	but	of	course
manufacturing	at	any	scale	is	rife	with	serious	challenges.	Just	because	some	egghead	can	sketch	a	design	on	a	napkin
or	click	around	fancy	CAD	software,	doesn’t	mean	it’s	going	to	be	easy	to	efficiently	replicate	that	model,	over	and
over.	Manufacturers	must	solve	the	problem	of	marshaling	resources,	both	natural	and	human,	in	the	right	quantities,
in	the	right	way,	and	at	the	right	time.	A	schematic	says	nothing	about	how	to	properly	outfit	a	factory,	train	and	retain
workers,	manage	a	supply	chain;	nor	does	it	address	legal	matters,	finances,	and	the	myriad	other	details	needed	to
consistently	churn	out	widgets	by	the	gazillions.

What’s	So	Hard	About	Troubleshooting?

After	all	this,	you	could	say	that	troubleshooting	is	the	easy	part.	Of	course,	it	isn’t.	Even	so,	it	calms	me	to	take	a
moment	and	understand	all	that	came	before	the	fateful	moment	I	picked	up	a	screwdriver	and	decided	to	give	repair	a
shot.	A	flash	of	brilliance	or	a	happy	accident	started	it	all,	then	the	idea	was	vetted	through	the	perspiration	of
scientists	and	inventors.	Next,	an	engineer	came	along	and	translated	the	concept	for	a	specific	purpose.	Finally,	a
manufacturer	or	builder	made	it	real.

Now,	it’s	up	to	you	to	make	it	work	again.	Troubleshooters	interact	with	the	Machine	Model	in	a	restorative	way	and
have	one	enduring	advantage:	fixing	anything	implies	that	the	system	functioned	at	one	point	in	the	past. 	Compared
to	bootstrapping	a	working	something	from	just	an	idea,	this	is	a	huge	head	start.	Repair,	at	its	most	efficient,	aims	to
interact	with	only	the	broken	parts	of	the	machine.

All	this	means	that	effective	troubleshooting	is	more	often	an	internal	struggle	than	a	grand	show	of	force.	Once,	I
remember	describing	a	car	problem	I	was	having	to	my	Grandfather,	an	auto	mechanic.	He	closed	his	eyes,	tilted	his

If	You	Have	To	Force	It,	Something	Is	Probably	Wrong	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 249

https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/
http://invention.si.edu/thomas-edisons-inventive-life
https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/
https://www.youtube.com/watch?v=STHKFlO-zBw
http://www.popularmechanics.com/science/health/g1216/10-awesome-accidental-discoveries/

head	back,	and	began	to	think	out	loud:	“ignition…accelerator…fuel	pump…turns	the…”	Grandpa	definitely	was
expending	effort,	but	not	the	kind	that	involves	rolling	up	your	shirtsleeves	and	grunting:	this	intense	investigation	was
all	happening	in	his	mind.	The	hard	parts	of	repair	are	figuring	out	what’s	wrong,	understanding	the	machine’s	design
(at	least	the	parts	that	are	integral	to	the	problem),	and	then	choosing	from	among	a	wide	spectrum	of	fixes.	Here,
brains	triumph	over	brawn.

Swing	away,	but	don’t	say	I	didn’t	warn	you…
(image:	Alfred	Harrell	/	Library	of	Congress)

Enough	Talk,	Pass	Me	That	Hammer

Sometimes	the	path	is	meant	to	be	difficult.	While	reading	this,	I’m	sure	the	seasoned	veterans	among	you	thought	of
times	when	elbow	grease	was	necessary.	You	can’t	definitively	say	that	the	application	of	great	effort	or	force	is	bad.
The	lesson	here	is	that	an	aware	Troubleshooter	pauses	and	reconsiders	when	something	gets	hard.	The	nature	of
repair	is	treading	well-worn	conceptual	and	physical	paths,	so	the	application	of	brute	force	or	sustained	exertion
should	be	surprising.	While	you	can	take	back	an	errant	thought,	an	angry	swing	of	the	hammer	can	leave	lasting	scars.

References:

Header	image:	Lee,	R.,	photographer.	Migrant	boy	who	is	somewhat	of	a	mechanic	checking	up	the	lighting	wires
of	their	improvised	truck	which	will	carry	them	to	California.	Near	Muskogee,	Oklahoma.	United	States,	Muskogee
County,	Oklahoma.	1939.	July.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017783819/.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	64.

If	You	Have	To	Force	It,	Something	Is	Probably	Wrong	was	originally	published	May	21,	2015.
If	You	Have	To	Force	It,	Something	Is	Probably	Wrong	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 250

http://www.loc.gov/item/ncr002218/
https://www.loc.gov/item/2017783819/

Notes:

If	You	Have	To	Force	It,	Something	Is	Probably	Wrong	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 251

What	We	Bring	With	Us:	“I	Want	One	Of	These”

Some	people	who	like	to	replace	parts	are	good	guessers,	and	I	never	liked	to	do	that.	Some	had	the	theory:	“If	I
guessed	the	first	time	and	I'm	right,	I	fixed	it,”	instead	of	diagnosing	the	problem.	I	wanted	to	know	what	was
wrong	before	I	replaced	a	part.	I	was	not	good	at	spending	other	people's	money.

Dan	McCormick

If	“one	good	test	is	worth	a	thousand	expert	opinions”	then	it’s	also	true	that	“one	broken	part	is	worth	a	thousand
detailed	diagrams.”	When	it	comes	to	seeking	replacement	parts,	have	what	you	need	in	hand.	That’s	not	a	fancy
metaphor,	I	mean	to	physically	put	the	broken	whatever	in	your	paws	and	bring	it	with	you	to	the	store	or	junkyard.

This	simple	act	cuts	through	the	potential	confusion	about	what	exactly	is	needed	and	will	prevent	repeat	trips.	Most
stores	will	have	tens,	if	not	hundreds,	of	options	for	replacement.	If	you	go	looking	for	a	lightbulb	at	a	typical	big-box
store,	you	can	expect	a	whole	aisle	of	choices.	You	can	easily	tell	a	lightbulb	apart	from	a	lawnmower,	but	can	you
distinguish	the	lightbulb	you	need	from	the	346	other	lightbulbs	on	display?	What	was	the	wattage?	What	do	the
threads	look	like?	What	color	temperature	do	I	need?	Hmm…I	see	there	are	bulbs	here	with	different	heights.	Will	this
taller	one	fit	in	my	fixture?

When	I	need	a	replacement	for	something,	I	usually	march	down	to	the	hardware	store	with	the	broken	one	in	my
pocket.	I’ve	saved	a	lot	of	time	by	simply	showing	the	busted	thing	to	the	clerk	and	saying	“I	need	one	of	these.”

What	We	Bring	With	Us:	“I	Want	One	Of	These”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 252

https://en.wikipedia.org/wiki/Big-box_store

When	your	choices	look	similar,	knowing	generally	what	you	need	isn’t	very	helpful	(“A	bolt	please…”).
Being	able	to	physically	compare	your	options	can	save	a	lot	of	time.

(image:	Lee	Russell	/	Library	of	Congress)

Of	course,	not	every	broken	thing	can	fit	in	your	pocket.	For	those	cases,	a	good	substitute	can	be	to	snap	a	few
pictures,	or	to	write	down	the	part	and	model	numbers.	However,	these	identifiers	can	be	discontinued	or	change;
also,	this	strategy	assumes	someone	can	translate	this	information	into	what	you	need.	There	might	be	multiple
companies,	apart	from	the	original	manufacturer,	making	“compatible”	replacement	parts.	Hopefully,	there	will	be	a
mapping	between	these	worlds	(OEM	part	#XXX	⇔	aftermarket	part	#YYY).	However,	there’s	nothing	quite	like	the
ability	to	put	broken	and	new,	side-by-side,	spotting	any	differences	between	the	two	before	you	make	the	long	drive
home.

Bonus	round:	have	you	ever	gone	to	the	store	and	forgotten	the	 one	thing	that	you	went	there	for?	I	have	done	this	(all
those	free	samples	in	the	deli	department	can	be	very	distracting…mmm,	cheese).	Let’s	just	say	that	it’s	harder	to	forget
your	trip’s	purpose	with	a	broken	part	weighing	down	your	pocket!

References:

Header	image:	Maxham,	Jason,	photographer.	A	lone	screw.	December	9,	2016.

What	We	Bring	With	Us:	“I	Want	One	Of	These” 	was	originally	published	December	11,	2016.

Notes:

What	We	Bring	With	Us:	“I	Want	One	Of	These”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 253

https://www.loc.gov/item/fsa1997024248/PP/

What	Else	Could	I	Be	Doing?

I	am	enough	of	the	artist	to	draw	freely	upon	my	imagination.	Imagination	is	more	important	than	knowledge.
Knowledge	is	limited.	Imagination	encircles	the	world.

Albert	Einstein

Troubleshooting	seems	to	involve	a	lot	of	doing:	preparing	your	workspace,	taking	things	apart,	looking	for
malfunctioning	components,	ordering	parts,	the	turning	of	wrenches,	etc.	You	take	positive	action	while	fixing
something:	you	choose	a	plan,	execute	it,	and	then	assess	the	results.	Following	a	particular	path	in	this	way,	from
beginning	to	end,	may	make	it	seem	like	repair	is	primarily	a	linear,	physical	process.	However,	the	organizing
concept	for	a	troubleshooting	project	exists	solely	in	your	mind:	by	selecting	a	mental	model	to	guide	your	repairs,
you’ve	decided	how	a	machine	should	work	and	therefore	the	standard	by	which	you’ll	be	judging	the	outcome.

But	before	you’ve	chosen	a	conceptual	guide	for	your	actions,	before	a	single	screw	is	loosened,	you’ve	made	a	much
more	important	judgement.	By	selecting	a	specific	repair	path,	you’re	implicitly	saying	that	it’s	the	best	among	all	your
available	options.	For	example,	you	might	perceive	those	lesser	alternatives	to	be:	replacing	the	failed	machine	with	a
new	one,	quitting	your	job	(if	you’re	fixing	something	for	work),	checking	your	email,	watching	YouTube,	going	to
lunch,	or	staring	out	the	window.	Whatever	other	pathways	you’ve	envisioned,	attempting	a	particular	repair	is

What	Else	Could	I	Be	Doing?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 254

http://www.saturdayeveningpost.com/2010/03/20/history/post-perspective/imagination-important-knowledge.html
https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/
https://artoftroubleshooting.com/2015/11/04/tube-of-plenty-analyzing-youtubes-first-decade/

asserting,	“I	think	this	is	better	than	A,	B,	or	C.”

We	often	make	choices	because	of	momentum,	or	a	sense	of	obligation,	or	because	we	don’t	know	any	better.	We	are
also	limited	by	what	we	think	is	plausible:	if	you	can’t	conceive	of	something	as	a	possibility,	you’re	unlikely	to	pursue
it.	This	is	why	repair	is	actually	a	problem	for	the	imagination.	When	troubleshooting,	I	always	try	to	keep	the	end	goal
in	mind.	Counterintuitively,	being	true	to	the	underlying	purpose	of	why	you’re	fixing	something	is	a	constraint	that
will	free	your	creativity.	You’ll	begin	to	see	all	kinds	of	possibilities,	some	of	which	won’t	involve	fixing	the	broken
thing	at	all!	Early	in	the	troubleshooting	process,	the	leverage	from	a	clever	redirection	can	be	astounding—a	good
idea	can	save	countless	hours	of	work.

Your	ability	to	optimize	reality	at	the	speed	of	thought	is	a	precious	gift.	Cultivating	it	requires	a	balance	of	internal
quiescence	and	the	clever	reuse	of	external	stimuli.	Your	mind	must	be	still	enough	so	that	your	flashes	of	brilliance
aren’t	drowned	out	by	distracting	chatter.	Engagement	with	the	world	provides	the	building	blocks	for	these
inspirations:	be	an	artist	that	mixes	lessons	from	your	own	doings,	good	ideas	from	other	people,	books	you’re	reading,
and	careful	observations	of	the	world.	When	a	brilliant	rearrangement	short	circuits	a	bad	plan,	instantly	cutting	an
easy	path	to	victory,	there	will	be	plenty	of	time	for	a	nap.

All	action	involves	the	employment	of	scarce	means	to	attain	the	most	valued	ends.	Man	has	the	choice	of	using
the	scarce	means	for	various	alternative	ends,	and	the	ends	that	he	chooses	are	the	ones	he	values	most	highly.
The	less	urgent	wants	are	those	that	remain	unsatisfied.

Murray	Rothbard	1

References:

Header	image:	Locke,	Edwin,	photographer.	Truckman	napping	at	Amity	Hall,	Pennsylvania.	Amity	Hall
Pennsylvania	Perry	County,	1937.	Aug.	Photograph.	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/fsa1998023597/PP/.
1	Rothbard,	Murray.	Man,	Economy	&	State.

What	Else	Could	I	Be	Doing? 	was	originally	published	May	3,	2017.

Notes:

What	Else	Could	I	Be	Doing?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 255

https://artoftroubleshooting.com/2011/11/22/does-it-need-to-be-fixed/
https://www.brainpickings.org/2013/02/11/thomas-edison-on-sleep-and-success/
https://www.loc.gov/item/fsa1998023597/PP/
https://mises.org/library/man-economy-and-state-power-and-market

Part	3:	Virtues

My	mindset	is:	never	be	afraid	to	try	and	fix	anything.	Odds	are,	if	it	can	be	fixed,	you	can	fix	it!

Mike	McCormick

Why	Talk	About	Virtue?

It	may	seem	quaint	to	introduce	a	concept	like	“virtue,”	especially	in	a	book	about	fixing	things.	It’s	probably	even
more	confusing	because	troubleshooting	is	associated	with	machines,	supposedly	a	world	apart	from	humans.	But,	it’s
essential	to	describe	the	attitude	and	character	of	a	great	troubleshooter,	should	you	want	to	become	one.

The	cultivation	of	these	traits	are	an	equal	partner	to	learning	the	strategies.	If	that	makes	it	sound	like	this	is	a	self-
improvement	program,	then	so	be	it.	If	you	want	to	become	a	better	troubleshooter,	you	will	need	to	improve	yourself.
Don’t	worry,	I’ll	tell	you	how—it	doesn’t	involve	attending	a	clothing-optional	“personal	change	workshop”	with	a
charismatic	guru	named	Ramu.

If	you	thought	the	mastery	of	troubleshooting	was	only	about	acquiring	deep	technical	knowledge	of	a	particular
system,	you’re	mistaken.	Coupling	your	expertise	with	the	proper	mindset	and	behaviors	will	allow	you	to	leverage	the
familiarity	you	do	possess,	but	will	also	take	you	well	beyond	the	limits	of	your	knowledge.	Virtuous	skills,	like	the
ability	to	listen	closely	to	someone	reporting	a	problem,	will	increase	your	chances	of	fixing	the	failure	even	if	you
don’t	know	much	about	the	particulars	of	a	broken	system.	That’s	because	they:

1.	 Direct	your	focus	externally	to	the	situation	and	facts	at	hand	and	put	you	closer	to	the	actual	problem.
2.	 Draw	upon	internal	resources	that	open	up	a	new	world	of	possibilities	for	finding	a	solution.	This	is	useful	for

problems	that	have	never	been	encountered	before	(i.e.,	there’s	no	book	you	can	look	in	that	will	have	the	answer).

Part	3:	Virtues	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 256

https://artoftroubleshooting.com/strategies/
http://www.imdb.com/title/tt0280720/

The	Classical	Virtues	were:	prudence,	justice,	temperance,	and	fortitude.	If	you	want	extra	credit,	you	can
practice	those	too.

(image:	Carol	M.	Highsmith	/	Library	of	Congress)

Some	of	the	virtues	may	appear	contradictory,	like	being	creative	versus	being	organized.	If	you	practiced	one	to	the
exclusion	of	all	others,	you	would	be	correct.	Most	virtues	are	like	this:	they	are	best	exercised	in	moderation.	Being
hardworking	is	typically	a	good	thing,	until	you	work	so	hard	that	your	spouse	leaves	and	you	have	a	heart	attack
because	you’ve	neglected	your	health.	Likewise,	being	fun-loving	is	an	attractive	quality,	but	pursued	single-mindedly
might	leave	you	bankrupt	and	living	in	a	van…down	by	the	river!

The	goal	of	the	virtues	is	to	give	you	a	choice	in	how	you	frame	your	actions	while	troubleshooting.	Ideally,	you’ll
bounce	between	the	virtues	as	the	context	requires.	While	brainstorming	solutions	and	alternative	workarounds,
switching	into	a	creative	and	playful	mode	will	be	ideal.	When	it	comes	time	to	collect	and	analyze	data,	systematic
and	organized	is	where	you’ll	want	to	be	mentally.	Achieve	balance	between	the	virtues	and	you	will	be	a	formidable
troubleshooter.

References:

Header	image:	Highsmith,	C.	M.,	photographer.	(2010)	Column	details	located	within	the	Pension	Building,	401	F
St.,	NW,	Washington,	D.C.	Washington	D.C.,	United	States,	2010.	[Photograph]	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/2010641753/.

Part	3:	Virtues	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 257

https://www.loc.gov/resource/highsm.26759/
https://www.youtube.com/watch?v=Xv2VIEY9-A8
https://www.loc.gov/item/2010641753/

Skepticism

It’s	good	to	have	a	certain	amount	of	doubt	about	what	is	being	reported.	Of	course,	you	can’t	be	a	jerk	about	it...
Hear	what	they	have	to	say	and	then	investigate	yourself.

Austin	Quade

When	it	comes	to	troubleshooting,	skepticism	is	a	virtue.	That’s	because	so	many	troubleshooting	projects	begin	with
someone	else’s	account	of	the	situation.	Be	nice	about	it,	but	never	take	a	problem	report	as	gospel	truth.	I	can’t	tell
you	the	number	of	times	I’ve	been	sent	down	the	rabbit	hole	by	taking	someone’s	description	of	a	failure	at	face	value.
A	person	comes	to	you	and	says,	“X	is	broke”:	the	truck	won’t	go,	the	Interwebs	are	down,	the	refrigerator	is	dead,	etc.
State	something	is	broken	and	your	mind	will	leap	to	consider	ways	it	can	be	fixed.	However,	in	my	experience,
people	are	much	more	likely	to	mean:	“I	can’t	do	Y”	(as	in,	“I	can’t	haul	the	dirt…,”	or	“I	can’t	send	this	email…”)
when	they	assert	that	something	is	broken.

I	stumbled	on	skepticism	as	a	virtue	of	troubleshooting	the	207 th	time	someone	came	to	me	with	a	problem,	along
with	associated	speculations	on	the	cause,	and	sent	me	on	a	wild	goose	chase.	Taking	their	report	at	face	value	led	to	a
long	exercise	of	debunking:	not	only	of	the	actual	problem,	but	ultimately	the	person’s	report	itself.	At	the	end,	I
thought	“You	lied	to	me!”	Fool	me	once,	shame	on	you,	fool	me	207	times…well,	you	won’t	fool	me	again!

Skepticism	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 258

There	must	be	a	lot	of	good	troubleshooters	here.
(image:	LeeAnne	Adams	/	CC	BY	2.0)

You	should	expect	most	problem	reporters	to	have	the	best	of	intentions,	but	not	necessarily	the	knowledge	or
expertise	to	relate	even	the	most	basic	facts	of	a	breakdown	(much	less	the	underlying	cause).	After	all,	if	they	were
that	knowledgeable	and	wise,	they	might	have	just	gone	ahead	and	fixed	it	by	themselves!	You’ll	find	all	kinds	of	wild
guesses	about	causes	embedded	in	user	reports.	Parsing	those	messages	by	asking	the	right	questions	is	an	art	in	and	of
itself,	as	you’ve	seen	in	“Skillful	Questioning”.

Until	you	master	that,	train	yourself	to	say	these	words:	“show	me.”	Even	better,	“What	exactly	are	you	unable	to
accomplish?”

With	regards	to	“show	me,”	there’s	nothing	like	actually	observing	a	person	attempting	to	do	something	they	 think
they	can’t	do.	Watching	is	frequently	a	powerful	antidote	to	any	speculative	words	that	may	have	been	uttered	during
the	reporting	phase.	Unfortunately,	it’s	also	an	entree	to	the	“intermittent”	class	of	troubleshooting	problems:	if	you’ve
ever	had	the	IT	guy	come	over	to	your	desk	only	to	have	the	problem	disappear,	you	understand	that	unexpected
things	can	happen	when	you’re	being	observed.	Watching	a	person	perform	a	task	can	also	be	a	moment	to	suggest	a
workaround	that	may	placate	them	until	a	real	solution	can	be	found.	You	may	notice	that	their	workflow	or	use	of	said
machine	is	somehow	suboptimal,	in	which	case	you	might	be	actually	improving	their	process:

You:	“This	copier	is	definitely	broken,	but	did	you	know	that	you	can	use	the	one	next	to	your	office,	rather	than	this
one	twelve	floors	down	in	the	basement?”
Them:	“You’re	amazing.”

The	question,	“What	exactly	are	you	unable	to	accomplish?”	brings	the	problem	back	to	the	land	of	facts	(versus	the
assumptions	that	frequently	accompany	bold	assertions	like	“X	is	broke!”)	and	what	is	actually	vexing	the	reporter	of
said	problem.	No	one	uses	a	machine	for	its	own	sake	(exception:	my	motorcycle),	so	that’s	why	“the	printer	is	broke”
can	easily	be	turned	into	“I	can’t	print	my	monthly	accounting	report	from	the	computer	in	the	conference	room.”
Which,	in	turn,	may	lead	to	the	discovery	that	the	printer	is	fine	and	that	an	automated	updater	installed	a	buggy
printer	driver	that	is	causing	Microsoft	Excel	to	crash	when	printing.	That’s	way	more	specific	and	definitely	not	as
dramatic	as	“the	printer	is	broke!”—but	it’s	a	problem	that	can	actually	be	solved	or	worked	around.

As	I	introduced	them,	I	said	that	the	Virtues	of	the	Troubleshooter	are	to	be	practiced	in	moderation.	When	it	comes	to
being	skeptical,	I’m	not	telling	you	to	disbelieve	everything	you	hear.	Likewise,	this	isn’t	license	to	mercilessly	question
every	fact	offered	by	someone	reporting	a	problem.	The	point	of	skepticism	is	to	keep	open	the	possibility	of	a
disconnect	between	words	and	reality,	between	someone’s	description	of	a	problem	and	the	problem	itself.	The	deeper

Skepticism	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 259

http://www.flickr.com/photos/lolo/4730352956/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2011/10/04/skillful-questioning-part-1/
https://artoftroubleshooting.com/virtues/

implication	of	skepticism	is	to	realize	that	you	have	a	choice	in	what	will	become	germane	to	your	investigation	and
that	it’s	your	job	as	a	troubleshooter	to	determine	what	is	relevant	and	what	is	true.

References:

Header	image:	“Mechanic	at	work”.	Aarron	Norcott,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/gD1HU_XU5aE.

Skepticism	was	originally	published	September	20,	2011.

Notes:

Skepticism	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 260

https://unsplash.com/photos/gD1HU_XU5aE

Listen	Up

I’m	guilty	of	this	as	I	like	to	chatter—I	jump	in	and	start	talking...	If	you	basically	bite	your	tongue	and	shut	up,
most	patients	will	give	you	all	of	the	information	that	you	need	in	a	much	more	efficient	amount	of	time,	versus
trying	to	interject	and	redirect	them.

Ken	Fechner

With	the	virtue	of	listening,	realizing	that	something	so	human	is	central	to	something	 seemingly	so	technical	is	a
microcosm	of	my	personal	journey	as	a	troubleshooter.	That	the	cold,	hard	world	of	machine	problems	could	be
undone	by	a	soft	skill	like	listening	is	not	a	new	idea:

The	soft	overcomes	the	hard;
the	gentle	overcomes	the	rigid.
Everyone	knows	this	is	true,

Listen	Up	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 261

but	few	can	put	it	into	practice.

Tao	Te	Ching	(verse	78)	1

Let	listening	be	a	proxy	for	using	all	of	your	senses	to	take	in	information	about	the	situation	at	hand.	Yes,	even	your
sense	of	smell	will	come	in	handy	while	troubleshooting—you	know	this	if	you’ve	ever	smelled	a	burnt	out	power
supply	or	gas	leak.	You	need	to	be	open	to	all	of	the	sensory	information	coming	your	way	when	investigating	a
problem.	I	chose	to	group	all	this	under	“listening”	because	of	the	special	importance	of	words:	as	noted	previously,
this	is	because	so	many	troubleshooting	exercises	begin	with	someone	else’s	account	of	the	situation.	As	opposed	to
“hearing”,	which	to	me	connotes	the	raw	sensory	experience	of	sound,	“listening”	implies	that	some	thought	is	applied
on	top	of	what	is	coming	in	from	your	ears.	Each	of	the	senses	can	be	thought	of	in	a	similar	manner:	the	sensory	data
must	be	combined	with	focused	effort	to	be	useful.

Listen,	even	if	they	don’t	have	much	to	say.
(image:	Library	of	Congress)

You	may	think	it	contradictory	to	have	both	skepticism	and	listening	as	Virtues	of	the	Troubleshooter.	What	use	would
a	skeptical	person	have	for	listening?	However,	it’s	not	a	contradiction	because	any	doubt	you	have	must	be	anchored
to	reality.	Feel	free	to	be	skeptical	of	someone’s	account,	but	make	sure	you’re	being	skeptical	of	what	the	person
actually	is	saying.	Try	to	cultivate	an	“informed	skepticism”	to	make	sure	you’re	resisting	against	something	real.	Put
another	way:	it	would	be	a	failure	to	counter	a	reporter’s	fantasy	of	a	problem	by	making	one	up	yourself	and
attributing	it	to	them!	If	you	want	to	tilt	at	windmills	alone,	there’s	no	surer	way	than	to	be	a	troubleshooter	who	has
stopped	listening.	It	may	be	funny	when	Cervantes	wrote	about	it,	but	tragic	when	observed	in	real	life.

When	it	comes	to	listening,	there’s	another	NLP	concept	that	is	extremely	helpful:	“uptime.”	Uptime	is	“tuning	the
senses	to	the	outside	world”2	and	it	is	extremely	useful	for	certain	phases	of	troubleshooting.	When	interviewing,	it
means	being	completely	present	in	the	interaction.	When	investigating	on-site,	it	means	being	focused	externally.
Doing	this	requires	energy	(especially	if	you’re	introverted),	but	it’s	worth	it.	Being	inside	your	head	at	these	crucial
moments,	you	will	miss	so	many	important	details.	I	discovered	the	value	of	uptime	by	the	astounding	number	of	times
the	key	to	solving	a	particular	problem	was	either	staring	me	in	the	face	or	explicitly	referenced	by	a	person	reporting	a
problem.	And,	conversely,	the	number	of	times	I	missed	it	by	being	distracted.	Now,	I	pay	attention	with	laser	focus.

I	interviewed	a	very	experienced	auto	mechanic	who	has	30+	years	in	the	troubleshooting	trenches.	He	laid	out	two
reasons	why	he	is	such	a	strong	believer	in	listening:	first,	the	person	closest	to	a	problem	will	always	know	better	than

Listen	Up	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 262

http://www.flickr.com/photos/library_of_congress/3029426027/
https://artoftroubleshooting.com/2011/09/20/skepticism/
http://www.archive.org/stream/historyofdonquix00cerv#page/n5/mode/2up
http://en.wikipedia.org/wiki/Neuro-linguistic_programming

you	what	is	“normal.”	Second,	listening	allows	you	to	size	up	someone’s	personality.	Dan	told	me	the	story	of	a	car
that,	from	his	perspective,	was	perfectly	fine.	However,	he	listened	to	the	client	anyway:

Jason	Maxham:	What	weight	do	you	put	on	a	client’s	description	of	the	problem?

Dan	McCormick:	A	lot.	They	know	their	car	better	than	I	do.	If	it’s	doing	something	different	now	than	what	it	did
a	month	ago	or	a	year	ago,	something	has	changed.	I	might	drive	it	and	say,	“I	don’t	notice	anything	wrong.”	I’ve
run	into	that	situation:	for	example,	this	guy	and	I	went	for	a	test	ride	and	I	said	“To	me	it	feels	fine…”	and	he	said
“No,	something	is	different.”	So,	we	decided	we	were	going	to	dig	into	it	and	I	started	tearing	the	car	apart	and	I
found	two	wires	that	were	crossed.	At	that	point,	the	guy	had	left	and	I	called	him	up	and	said,	“Would	you	mind
coming	back	and	going	for	a	ride?”	I	switched	the	two	connectors	around	and	he	said	“That’s	it,	that’s	the	way	it
used	to	run!”	In	my	mind,	I	didn’t	feel	like	there	was	anything	wrong,	but	this	guy	really	knew	his	vehicle.

Putting	It	All	Together:	Being	Skeptical	And	Listening	Carefully

Listening	while	guiding	someone	to	give	a	useful	account	is	a	delicate	balance	of	letting	them	speak,	while
also	leading	the	person	to	tell	you	what	you	need.	If	you	do	all	the	talking	you	won’t	be	getting	much	closer	to	a
solution,	but	neither	should	you	let	someone	go	off	on	an	endless	tangent.	This	is	another	reason	why	you	must	be	in
uptime	during	the	interview	process:	you	must	maintain	situational	awareness	to	break	in	when	the	interviewee	goes
off-road.	If	you	don’t	maintain	control,	prepare	to	hear	about	life,	the	universe,	and	everything	else.	I	think	this	is
because	people	think:	“Finally,	someone	is	listening	to	my	problems…so	I’ll	just	keep	going!”	It’s	funny	how	inquiring
about	a	broken	printer	can	quickly	morph	into	a	free-range	discussion	about	management’s	lack	of	vision,	the	absence
of	meaningful	choices	in	the	break-room	vending	machines,	and	the	“girl	that	got	away.”	Some	people	don’t	get	a
chance	to	vent	very	often	and	will	relish	your	bent	ear,	while	others	simply	love	spinning	a	good	yarn.	You	must	be
“up	above	it”	(guiding	the	conversation	by	cutting	short	unnecessary	threads)	and	“down	in	it”	(actively	listening	and
soaking	up	the	critical	details	being	thrown	your	way).

References:

Header	image:	Bain	News	Service,	P.	Listening	to	Records.	ca.	1920-1925.	[Photograph]	Retrieved	from	the	Library
of	Congress,	https://www.loc.gov/item/2014715085/.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins:	1999),	verse	78.
2	Joseph	O’Connor	and	John	Seymour,	 Introducing	NLP	(London:	Thorsons/HarperCollins,	1990),	pg.	111.

Listen	Up	was	originally	published	November	2,	2011.

Notes:

Listen	Up	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 263

https://www.loc.gov/item/2014715085/

Curiosity

You’re	going	out	into	the	unknown.	If	it	was	known,	it	wouldn’t	be	a	problem,	it	wouldn’t	need	troubleshooting.

Karl	Kuehn

Troubleshooting	favors	the	curious.	A	burning	desire	to	learn	and	ask	questions	is	a	natural	complement	to	fixing
things.	Don’t	mistake	the	pressure	to	fix	a	problem	for	curiosity:	this	is	separate	from	job	responsibilities	and	the
frustrated	energy	created	when	a	breakdown	blocks	your	way.	Foster	your	sense	of	curiosity	as	a	virtue	in	its	own	right,
especially	apart	from	your	work.	Asking	“Why?”	and	following	the	answer	wherever	it	leads,	will	spill	over	to	your
troubleshooting.	Probing	deeper	won’t	seem	like	a	chore,	because	it’ll	be	in	your	nature	to	want	to	go	beyond	the
surface	level.	When	you	do,	you’ll	find	that	the	world	is	an	interesting	place	when	you	peel	back	its	layers.	My
philosophy	of	“Cleaning	Up”	stems	from	this	inquisitive	mindset:	for	the	curious,	the	problem	and	immediate	solution
are	just	the	beginning.

Curiosity	Made	The	Cat	Into—A	Great	Troubleshooter!

Were	you	that	kid	that	liked	to	take	things	apart	just	to	see	how	they	worked?	If	so,	you	might	not	have	always	been
able	to	put	it	back	together	again.	Curiosity	can	get	you	in	trouble—and	that	can	be	a	good	thing—assuming	you	live
to	tell	the	tale!	I	remember	messing	around	with	the	family	computer	when	I	was	growing	up.	What	does	this	file	do?
What	would	happen	if	I	edited	it	or	moved	it?	The	family	computer	was	the	most	expensive	thing	we	owned	(besides
our	house	and	cars).	It	was	spoken	about	in	hushed	voices	and	wrecking	it	would	be	a	Bad	Thing.	But	wreck	it	I	did
and	most	of	the	time	I	was	able	to	put	it	back	together	again.

Curiosity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 264

https://artoftroubleshooting.com/cleaning-up/

Curiosity	will	lead	you	to	situations	that	are	over	your	head.	I	mucked	around,	made	mistakes,	and	had	to	recover.	This

made	me	stronger.	I‘m	not	saying	you	have	to	flirt	with	disaster	to	be	a	competent	troubleshooter.	While	the	super
inquisitive	make	great	fixers,	I	just	want	your	average	troubleshooter	to	be	a	little	more	curious.

Let	your	curiosity	take	you	beyond	the	horizon,	to	that	place	just	out	of	view…
(image:	NASA	Goddard	Space	Flight	Center 	/	CC	BY	2.0)

Exercise	That	Muscle

Don’t	consider	yourself	naturally	curious?	That’s	okay,	I	think	it’s	something	that	can	be	cultivated.	Try	this	fun
exercise:

The	first	week:	every	day,	choose	something	in	your	non-work	life	and	decide	to	learn	just	a	little	more	about	it.	Take
a	business,	organization,	or	government	entity	that	you	know	or	interact	with	and	look	them	up	online	(this	can	be
fascinating,	especially	if	they	are	prone	to	saucy	scandals!).	You	probably	come	into	contact	with	lots	of	people	who
do	things	for	you:	butchers,	taxi	drivers,	auto	mechanics,	doctors,	store	clerks,	baristas,	etc.	Why	not	ask	them	how
business	is	going	or	about	an	aspect	of	their	job?	There	are	lots	of	things	we	rely	upon	in	our	modern	lives,	but	it’s
amazing	how	we	take	them	for	granted.	Do	you	know	how	electricity	works	or	how	an	internal	combustion	engine
operates?	Who	invented	the	Internet?	What’s	in	a	Twinkie?	If	you’re	truly	stuck	and	need	inspiration	for	a	topic,	dive
into	a	random	Wikipedia	article.

The	second	week:	every	day,	choose	something	from	your	work	life	and	use	that	as	a	basis	to	dig	a	little	deeper.	The
tools	you	use,	processes	you	manage,	the	people	you	work	with,	your	organization,	your	industry:	these	are	all	fertile
ground	for	asking	questions.	Who	makes	your	favorite	tools	and	what	else	do	they	offer	that	might	be	useful?	Who
invented	the	key	technologies	in	your	industry?	What’s	the	background	of	your	co-workers?	Who	stocks	the	vending
machines	in	the	cafeteria?	What	does	your	company’s	latest	annual	report	and	balance	sheet	say	about	the	future	of
your	job?

I	guarantee	that,	at	least	once	during	these	2	weeks	of	curiosity,	your	mind	will	be	expanded	with	an	amazing	fact,	a
fascinating	but	hidden	connection,	or	a	supremely	useful	nugget	o’	knowledge	that	will	make	your	life	better.

After	that:	Keep	a	running	list	of	things	that	you	want	to	learn	more	about.	I	keep	a	list	like	this	on	my	phone	and	I	add
to	it	whenever	I	come	across	something	that	deserves	follow-up.	The	upside?	I’m	never	bored	as	there’s	always
something	interesting	on	the	list	to	learn	more	about.

Fake	It	Till	You	Make	It	(But	Don’t	Go	Too	Far)
Curiosity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 265

http://www.flickr.com/photos/gsfc/7348953774/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Special:Random
http://www.investopedia.com/terms/b/balancesheet.asp#axzz2CBBILWQo

If	you	don’t	consider	yourself	a	curious	person,	just	try	pretending	you	are	one	when	troubleshooting.	Think:	what
would	a	curious	person	do.	I	can	just	see	the	“WWCPD?”	bumper	stickers,	coffee	mugs,	and	t-shirts	being	printed	in
mass	quantities—I’ll	be	glad	to	take	the	credit	for	that	when	it	happens.	Especially	look	for	moments	where	inquiry	has
stopped	and	a	“first-level”	response	or	solution	is	being	accepted.	The	curious	person	isn’t	satisfied	with	the	surface,
they’re	eager	to	plumb	the	depths.

When	can	curiosity	get	in	the	way?	I	mentioned	that	the	 Virtues	of	the	Troubleshooter	need	to	be	balanced	amongst
each	other	and	practiced	in	moderation.	As	surprising	as	it	might	seem,	curiosity	should	probably	take	a	back	seat	to
the	other	virtues	when	actually	troubleshooting.	Curiosity	really	shines	as	a	virtue	before	and	after	fixing
something.	Before,	it’s	great	for	accumulating	knowledge	about	the	world	in	preparation	for	troubleshooting	(especially
if	you’re	curious	about	your	tools,	systems,	organization,	and	industry).	After	everything’s	back	up	and	running,
curiosity	is	great	for	pushing	to	fully	understand	what	happened	and	make	long-term	improvements	(i.e.,	in
the	“Cleaning	Up”	phase).

While	troubleshooting,	however,	curiosity	must	be	tempered	by	the	other	virtues.	The	knowledge	gained	from	being
curious	has	a	cost	in	terms	of	time	and	resources.	As	noted	before,	sometimes	it	simply	doesn’t	pay	to	know	why	a
failure	occurred.	The	impact	of	downtime	should	lead	the	troubleshooting	process:	if	lives	or	livelihoods	are	on	the
line,	the	focus	should	be	on	getting	back	to	normal.	Save	your	wide-eyed	curiosity	for	when	the	pressure	is	off.	Lastly,
the	troubleshooter	should	always	keep	an	eye	on	safety.	Curiosity	may	have	killed	the	cat,	but	don’t	let	it	harm	you!

References:

Header	image:	“Mz	3,	BD+30-3639,	Hen	3-1475,	and	NGC:	7027	–	Planetary	Nebulas	–	Fast	Winds	from	Dying
Stars”.	NASA’s	Chandra	X-ray	Observatory.	Smithsonian	Institution.

Curiosity	was	originally	published	November	15,	2012.

Notes:

Curiosity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 266

https://artoftroubleshooting.com/virtues/
https://artoftroubleshooting.com/cleaning-up/
https://www.flickr.com/photos/smithsonian/2940653103/

Out	Of	Your	Vulcan	Mind

It’s	important	for	you	as	a	troubleshooter	to	remain	calm.	Because	if	you	start	freaking	out,	it	will	make	them	freak
out.	And,	a	lot	of	times,	they	are	already	freaking	out.

Austin	Quade

Up	to	this	point,	the	Virtues	have	focused	on	social	skills	like	listening	and	right-brained	strengths	like	creativity.	Now
it’s	time	to	give	a	nod	to	what	the	left-brain	brings	to	the	table.	I	want	the	information	in	The	Art	Of	Troubleshooting	to
be	extremely	practical,	so	I’ve	highlighted	some	very	simple	troubleshooting	methods	like	the	reboot	and	seeing	if
it’s	plugged	in.	However,	I	don’t	want	you	to	get	the	false	impression	that	the	answers	are	always	that	easy	–	some
issues	will	take	everything	you’ve	got	(and	then	some)	to	figure	out.

Clearly,	you’re	interested	in	reaching	a	level	of	mastery	that	will	allow	you	to	tackle	the	hardest	troubleshooting
problems.	That	will	require	a	higher	level	of	commitment,	along	with	four	interconnected	and	Spock-like	virtues:	being
organized,	systematic,	detail-oriented,	and	logical.

Out	Of	Your	Vulcan	Mind	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 267

https://artoftroubleshooting.com/virtues/
https://artoftroubleshooting.com/2011/12/21/defaults-and-reboots/
https://artoftroubleshooting.com/2012/02/14/is-it-plugged-in/

Put	your	inner	Spock	on	the	problem.
(image:	Wikimedia	Commons)

Organized

Difficult	problems	will	require	you	to	create	your	own	structure	around	the	troubleshooting	process.	“Winging	it”
won’t	be	an	option	for	a	months-long	investigation	that	involves	not	just	finding	and	fixing	a	problem,	but	also
preparing	a	detailed	report	to	be	read	by	your	peers.

Organization	might	be	required	in	many	dimensions,	depending	on	the	size	of	the	problem	you’re	trying	to	solve.	You
might	have	to	manage	a	team	of	troubleshooters	(people),	conduct	interviews	(gather	information),	work	with	outside
service	technicians	(manage	company	resources),	update	the	wider	organization	on	your	progress	(communicate),
alongside	the	core	tasks	of	finding	and	fixing	the	issue.	Each	of	these	areas	benefits	from	careful	planning	and
coordination.	Being	organized	also	includes	marshaling	the	information	you	will	analyze	and	disseminate:	from	taking
notes	to	collecting	data	(logging,	graphing,	etc.).	Ably	executing	these	varied	roles	will	require	good	organizational
skills.

Out	Of	Your	Vulcan	Mind	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 268

http://commons.wikimedia.org/wiki/File:Leonard_Nimoy_William_Shatner_Star_Trek_1968.JPG

Systematic

Troubleshooting	can	be	a	real	grind:	there	will	be	times	when	you’ll	need	to	tediously	examine	a	long	list	of
possibilities,	one	by	boring	one.	The	Strategies	are	designed	to	reduce	the	time	spent	mucking	around,	but	the
shortcuts	they	provide	won’t	always	bear	fruit.	When	that	happens,	you’ll	need	to	step	into	a	methodical	mindset	to	go
the	full	distance.

Especially	as	the	complexity	of	a	problem	increases,	the	number	of	variables	will	grow	beyond	your	mind’s	ability	to
track	them.	Research	suggests	that	your	mind’s	working	memory	is	only	between	4-7	items1.	Troubleshooting	simple
machines	may	not	tax	this	limit.	For	everything	else,	you’ll	need	to	get	out	a	notebook	and	pencil,	or	fire	up	a
spreadsheet	program.

Systematic	also	means	being	thorough,	following	through	all	the	way	on	a	given	troubleshooting	path	to	obtain	a
useful	end	result.	With	some	strategies,	there	will	be	a	large	number	of	possibilities	to	test,	along	with	meticulously
resetting	your	test	environment	every	time	to	get	valid	results.	Getting	to	the	end	of	a	process	like	this	can	be	tedious,
but	some	data	won’t	be	useful	for	decision-making	until	you’ve	mapped	the	entire	set	of	possibilities.

Detail-oriented

When	troubleshooting,	the	devil	is	in	the	details.	Or	perhaps	leprechauns	live	in	there.	Or	pixies.	 Or	that	gremlin
William	Shatner	saw	on	the	wing	in	that	Twilight	Zone	episode.	Whatever’s	plaguing	your	machines,	you’ll	need	to	get
involved	with	the	nitty-gritty.	Modern	machines	can	have	hundreds	or	thousands	of	parts.	The	strategies	presented	in
this	work	try	to	increase	your	odds	of	finding	the	errant	element	without	having	to	resort	to	a	piece-by-piece
inspection.	However,	the	ability	to	track	a	project	on	a	micro-level	will	be	useful	for	those	complex	problems	that	will
sprawl	out	and	stay	a	long	while,	like	a	bad	houseguest.

Logical

The	first	principle	is	that	you	must	not	fool	yourself—and	you	are	the	easiest	person	to	fool.

Richard	Feynman	2

Our	pointy-eared	role	model	knew	that	no	amount	of	feeling	would	make	a	situation	other	than	it	is.	Always	remember
the	difference	between	good	sounding	reasons	and	sound	good	reasoning!	Spock	had	an	unwavering	commitment	to
reality,	there	was	no	fooling	him:	he	would	follow	the	facts	wherever	they	led.	Breakdowns	can	have	an	emotional
component,	especially	when	there	are	angry	clients	or	inconvenienced	co-workers	knocking	at	your	door.	It	might	be
tempting	to	respond	in	kind	with	passionate	fire,	but	it’s	better	to	channel	Spock	instead.	Turn	to	detached	reason,
focus	on	the	facts,	and	use	the	tool	best	suited	for	the	job:	logic.

References:

Header	image:	Jeswin	Thomas,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/hecib2an4T4.
1	Nelson	Cowan,	“The	magical	number	4	in	short-term	memory:	A	reconsideration	of	mental	storage
capacity,”	Behavioral	and	Brain	Sciences,	February,	2001.
2	Richard	P.	Feynman,	Surely	You’re	Joking,	Mr.	Feynman!	 (New	York:	W.W.	Norton	&	Company,	1997),	pg.	343.

Out	Of	Your	Vulcan	Mind	was	originally	published	March	7,	2013.

Notes:

Out	Of	Your	Vulcan	Mind	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 269

https://artoftroubleshooting.com/strategies/
http://en.wikipedia.org/wiki/Working_memory#Capacity
https://www.youtube.com/watch?v=fXHKDb0CNjA
https://unsplash.com/photos/hecib2an4T4
http://journals.cambridge.org/action/displayAbstract?fromPage=online&aid=84441

Creativity

You	have	to	have	an	improvisational	mindset.

Alex	Chaffee

Troubleshooting	is	about	making	something	work	again;	most	of	the	time,	no	one	will	care	 how	you	make	it	work
again!	People	use	machines	to	accomplish	their	goals,	not	for	their	own	sake.	They	are	a	means	to	an	end:	if	the
purpose	a	machine	served	can	be	met	some	other	way,	no	one	will	mourn	a	breakdown.

Recognizing	this	critical	distinction	between	machines	and	the	goals	they	advance	leads	to	the	following	insight:
because	the	outcome	is	the	most	important	thing,	any	reasonable	route	that	gets	you	there	should	be	considered.	That
includes	totally	bypassing	a	broken	system!	When	you’re	freed	to	take	any	number	of	paths	to	the	promised	land,
creativity	becomes	a	potent	virtue	of	the	troubleshooter.

Using	your	creativity	to	make	a	situation	better	is	the	difference	between	someone	who	merely	“fixes	things”	and	a
bona	fide	Troubleshooter.	Repair,	swap,	replace,	reroute,	cannibalize,	triage,	find	a	workaround,	or	do	nothing:

Creativity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 270

creative	problem-solvers	open	themselves	to	the	whole	universe	of	possibilities.

Choosing	Between	Mrs.	Right	And	Mrs.	Right	Now

When	a	machine	breaks,	the	need	it	served	will	still	persist–that’s	the	impetus	behind	every	repair.	However,	the
existence	of	this	unfulfilled	need	is	why	you	must	troubleshoot	the	whole	situation.	In	addition	to	searching	for	a	fix,
you	should	also	look	for	ways	to	provide	temporary	relief	to	those	affected	by	a	machine	failure.	You	may	need	to	jury-
rig	something	to	get	that	last	load	delivered	or	that	important	email	sent,	until	a	long-term	solution	can	be	found.

Balancing	the	needs	of	the	present	with	the	future	is	its	own	art	because	providing	temporary	relief	can	conflict	with
efforts	to	find	a	long-term	solution.	There’s	usually	not	just	a	single	fix	to	consider,	but	rather	a	whole	spectrum	ranging
from	the	temporary	to	the	optimal	(and	often	expensive).	The	finite	resources	needed	to	make	a	repair	(people,	tools,
spare	parts,	etc.)	may	only	allow	you	to	pursue	one	avenue	at	a	time.	If	you	intend	to	quickly	put	a	machine	back	into
service	with	a	temporary	fix,	clearly	it	won’t	be	available	for	a	more	extensive	repair	that	would	require	downtime.
Another	danger	is	that	temporary	hacks	can	become	de	facto,	permanent	fixes	if	you’re	not	vigilant	and	push	to	make
long-term	repairs	a	priority.

You	could	write	an	entire	book	about	these	competing	considerations—in	fact,	 this	book—so	we	won’t	go	over	what
has	already	been	covered.	The	takeaway	is	that	creativity	is	the	supreme	virtue	when	managing	situations	where	a
malfunction	has	left	someone	stranded.	If	you	unleash	that	creative	genius	inside,	you	can	often	find	a	way	to	provide
both	temporary	relief	and	long-term	reliability.

So	many	paths	to	take…
(image:	Susan	Yin	/	Unsplash)

The	Right	Question

So,	you	need	to	be	creative…but	is	it	possible	to	learn	to	be	more	creative?	I	certainly	can’t	teach	you	in	the	short
space	of	this	piece,	and	I’m	not	even	sure	where	I	would	begin.	Many	engineer-types	draw	creative	inspiration	from
other	aspects	of	their	lives,	from	artistic	hobbies	like	music,	photography,	painting,	dancing,	improv,	theater,	etc.	These
activities	can	cross-pollinate	to	your	problem-solving,	so	consider	those	avenues.	Others	find	that	it’s	hard	to	access
their	creative	side	because	of	a	cluttered	or	“noisy”	mind.	In	order	to	give	yourself	the	space	to	actually	be	creative,
you	may	need	to	first	gain	control	of	your	runaway	thoughts.	On	that	front,	check	out	the	new-fangled	inventions	of
exercise	and	meditation.

The	above	are	all	worthy	pursuits	that	can	enrich	your	life	and	boost	your	creativity.	However,	I	don’t	want	you	to
think	you	need	to	embark	on	some	radical	self-improvement	program	just	to	inject	a	little	more	imagination	into	your

Creativity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 271

https://artoftroubleshooting.com/book/
https://unsplash.com/photos/Ctaj_HCqW84

problem-solving.	It’s	likely	you	already	have	plenty	of	clever	ideas	and	just	need	to	remind	yourself	of	the	distinction
between	machines	and	the	purposes	they	fulfill.	Lastly,	asking	this	question	before	you	start	troubleshooting	will	get
your	creative	juices	flowing:

“What	exactly	does	this	machine	do	for	us?”

This	query	will	focus	your	mind	on	the	end	goal—the	need	a	machine	was	serving.

Also,	be	sure	to	ask	those	affected	by	a	breakdown	how	they	would	manage	if	a	machine	took	a	long	time	to	be
repaired:	the	“victims”	will	often	have	the	best	ideas	for	workarounds!

“Do	you	mind	if	I	try	out	some	new	techniques	while	we’re	falling	to	our	deaths	and	you’re	strapped	to	my
belly?”

(image:	Morgan	Sherwood	/	CC	BY	2.0)

Creativity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 272

http://www.flickr.com/photos/flawedartist/3633711083/
http://creativecommons.org/licenses/by/2.0/deed.en

Exercise	That	Muscle

In	those	high-pressure	situations	where	creativity	would	be	useful,	you	might	not	be	able	to	generate	good	ideas
because	of	the	stress	involved.	Or,	maybe	the	troubleshooting	process	in	your	field	is	rigidly	proscribed	because	of
legal,	safety,	or	quality	reasons.	Some	professions	(police,	firefighters,	pilots,	doctors,	etc.)	have	well-defined
procedures	and	require	extensive	training	because	stress	impairs	cognitive	functions.	I’m	not	sure	I	want	my	brain
surgeon	or	skydiving	instructor	to	“get	creative”	without	first	testing	their	whacky	new	theories	in	a	safe	and	controlled
environment	(or	on	themselves).	An	idea	might	look	good	at	first	glance,	but	after	critical	examination	it	may	fall	apart.
You’d	like	to	know	this	before	it	really	counts.

High-stakes	troubleshooting	will	still	benefit	from	your	creative	input,	but	in	a	more	thoughtful,	 after-the-fact	type	of
manner.	Root	cause	analysis	(RCA),	when	done	post-crisis,	is	a	great	way	to	thoroughly	review	an	incident	and
generate	ideas	for	future	improvements.	At	a	conference	table,	far	removed	in	space	and	time	from	the	chaos	of	a
meltdown,	you	can	feel	free	to	be	as	creative	as	you	want.	Plus,	your	imaginative	new	ideas	will	benefit	from	the	peer
review	of	such	a	setting.	There’s	no	substitute	for	taking	your	time:	some	refinements	will	need	the	rigor	of	the
scientific	method	(making	a	hypothesis,	designing	an	experiment,	collecting	data,	etc.)	to	know	whether	they	are	better
than	your	current	practices.	Finally,	the	learning	that	happens	as	a	result	of	your	RCA	process	will	lead	to	the	kind	of
deep	proficiency	that	makes	spontaneous	creativity	possible.	If	you’ve	ever	seen	a	true	expert	come	up	with	amazing
things	on-the-spot,	it’s	usually	a	result	of	all	the	experience	and	learning	that	came	before.

References:

Header	image:	Lucas	Miguel,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/SdMuKn6KKaA.

Creativity	was	originally	published	April	12,	2013.

Notes:

Creativity	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 273

http://psychcentral.com/news/2009/01/28/stress-disrupts-thinking-but-brain-is-resilient/3741.html
https://artoftroubleshooting.com/2013/03/14/down-to-the-roots/
https://unsplash.com/photos/SdMuKn6KKaA

Be	Present

You	need	to	be	open	and	utilize	all	the	senses	you	have.	Not	only	all	five	senses,	but	also	your	sixth	sense.

Rich	Kral

When	I	was	learning	how	to	ride	a	motorcycle,	I	decided	to	take	an	introductory	“safety	and	skills”	class.	I’d	heard
about	how	dangerous	riding	was,	so	it	seemed	like	a	good	idea.	Point	of	disclosure:	taking	the	class	didn’t	prevent	me
from	crashing	my	first	motorcycle,	leaving	a	big	scar	on	my	knee.	You	were	right,	Mom.

When	you’re	first	learning	how	to	ride	a	motorcycle,	turning	can	be	quite	mysterious.	First,	there’s	the	concept
of	countersteering,	which	is	very	much	counter-intuitive.	That’s	right,	you	push	the	handlebars	in	the	 opposite
direction	of	the	turn.	On	top	of	that	mind-blowing	detail,	coordinating	the	turn	with	my	head,	arms,	and	legs	proved	to
be	quite	a	challenge	for	me.	Feeling	out	of	control,	I’d	move	my	head	(and	field	of	vision)	all	over	the	place,	including
long	glances	at	the	ground	in	front	of	me	(so	I	could	see	where	I	was	going	to	crash!).	I	was	always	veering	off	past	the
orange	cones	set	up	to	mark	the	course	boundary,	or	coming	dangerously	close	to	my	fellow	students.	Seeing	my
struggles,	one	of	the	instructors	pulled	me	aside	and	said	“Forget	everything	we’ve	taught	you	and	just	do	one	thing:
look	through	the	turn	at	where	you	want	to	go.”

I	tried	out	his	advice	on	the	next	turn	and—SHAZAM!	That	one	little	tip	cleaned	everything	up.	The	motorcycle
magically	went	where	it	should;	my	body	and	head	aligned	while	leaning	the	bike	just	the	perfect	amount	to	complete

Be	Present	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 274

http://en.wikipedia.org/wiki/Countersteering

the	turn.	I	did	it	a	few	more	times	and	realized	that,	by	simply	looking	in	the	right	place,	I	didn’t	really	have	to	think
about	turning	at	all.	What	was	so	complicated	before	was	now	reduced	to	a	single	thing.	Looking	through	to	the	end	of
the	turn	automatically	coordinated	all	those	other	actions	I	was	struggling	with—and	I	didn’t	even	have	to	be
consciously	aware	of	them.

You	could	just	do	it,	or…create	a	situation	that	requires	a	lot	of	hand	washing.	It’s	your	call.
(image:	s.h.u.t.t.e.r.b.u.g	/	CC	BY	2.0)

Since	then,	I’ve	been	on	the	lookout	for	other	“unifying	actions:”:	solitary	things	you	can	do	that	automatically	bring
with	them	a	whole	host	of	other	benefits.	A	“buy	one	get	one	free”	sale	for	your	efforts,	if	you	will.	When	it	comes	to
troubleshooting,	I	can	think	of	no	better	example	of	a	“unifying	action”	than	being	present	while	you	solve	problems.	If
there’s	something	that	will	kill	your	troubleshooting	abilities,	it’s	being	in	your	head	at	those	critical	moments	where
you	should	be	externally	focused	instead.	That’s	because	the	initial	phases	of	troubleshooting	are	all	about	collecting
information	about	the	situation	at	hand.

You	can	start	whacking	away,	trying	random	strategies,	but	you’ll	be	so	much	more	effective	if	you	accept	what	is
freely	given	and	then	take	the	obvious	next	step.	What	is	freely	given?	All	those	relevant	facts	that	are	staring	you	in	the
face	if	you	were	just	in	tune	with	the	situation.	The	key	details,	which	will	help	you	select	the	correct	strategy,	are	out
there	in	the	world	around	you,	not	floating	around	inside	your	head.	The	other	virtues	may	come	into	play	later	on,	but
being	present	reigns	supreme	at	the	beginning	of	any	troubleshooting	exercise.	There’s	just	too	much	you	can	miss	by
mentally	being	elsewhere.	Let	me	give	you	some	examples	of	how	being	present	brings	with	it	a	whole	host	of	other
benefits,	for	free.	Consider:

Troubleshooting	environments	are	often	dangerous,	with	exposed	electrical	circuits,	ladders,	power	tools,	heavy
machinery,	parts	strewn	across	the	floor,	sharp	edges	of	broken	components,	etc.	In	these	kinds	of	places,	you	must
be	externally	focused	and	aware	in	order	to	be	safe.
Listening	to	other	people	describe	their	problems	requires	your	attention:	important	details	might	need	to	be	teased
out	with	smart	follow-up	questions.	On	the	opposite	end,	your	critical	filter	must	also	be	engaged	to	prevent	being
led	down	a	rabbit	hole.	Both	of	these	considerations	require	paying	close	attention	to	what	you	are	receiving	from
the	people	around	you.
The	environment	will	give	you	clues	as	to	what	is	wrong:	funny	noises,	odd	smells,	error	messages,	indicator	lights,
the	state	of	nearby	machines,	etc.	Tuning	into	this	contextual	information	will	often	make	the	difference	between	a
timely	repair	and	a	painful	slog.

I	could	go	on	and	on,	but	instead	I’ll	simply	say	that	 every	strategy	in	The	Art	Of	Troubleshooting	will	benefit	from

Be	Present	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 275

http://www.flickr.com/photos/qjotennis/3807139534/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2011/11/01/listen-up/
https://artoftroubleshooting.com/2011/09/20/skepticism/

the	virtue	of	being	present.	Conversely,	everything	you	do	will	be	that	much	harder	if	you’re	off	on	another	planet.

Later	on,	there	will	be	an	appropriate	time	to	go	inside	your	head	and	build	castles	in	the	sky.	Save	that	for	when
you’re	interpreting	the	information	you’ve	collected	and	during	the	final	phase	(“Cleaning	Up”),	where	you	learn	from
a	breakdown.	Those	processes	benefit	from	being	inwardly	focused	and	decoupling	from	the	outside	world—your
ability	to	concentrate	and	think	will	be	improved	from	the	isolation.

But,	when	I’m	actually	troubleshooting,	I’m	with	you.	I’m	right	here.

References:

Header	image:	Hine,	L.	W.,	photographer.	“Alex”,	a	fourteen-year	old	working	boy	in	St.	Etienne,	was	found
intently	studying	the	playground	exhibit	at	the	Children’s	Welfare	Exhibit	at	St.	Etienne.	Exposition	of	the	ARC.	July
1918.	Saint-Etienne,	France,	July	16,	1918.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017681813/.

Be	Present	was	originally	published	April	17,	2013.

Notes:

Be	Present	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 276

https://artoftroubleshooting.com/cleaning-up/
https://www.loc.gov/item/2017681813/

Setting	Boundaries

As	the	years	went	by,	the	cars	got	more	expensive	and	the	people	got	crabbier.	There	was	no	patience	and	they
would	get	on	your	back.	I’d	say,	“Wait	a	minute.	I	didn’t	make	this	car.	I	didn’t	sell	you	this	car.	I’m	just	trying	to
help	you.”

Gerald	Quade

I	vividly	remember	one	of	the	first	times	I	stepped	back	from	the	abyss.	While	I	was	looking	for	a	full-time	job	after	I
graduated	from	college,	I	did	some	IT	consulting	for	local	businesses	in	my	hometown.	One	of	my	clients	was	a
successful	family	business	that	had	outsourced	most	of	their	IT	work	to	a	consulting	firm.	I	filled	the	gaps	between	visits
from	their	main	consultants	with	anything	that	needed	to	be	repaired,	installed,	or	upgraded:	PCs,	printers,	Internet
access,	software,	etc.	These	were	basic	tasks	I	felt	very	comfortable	performing,	and	low-risk.

One	day,	I	was	asked	to	install	a	piece	of	software	that	ran	on	the	office’s	shared	application	server.	There	was	a	new
text	editor	program	they	wanted	to	run	on	all	the	terminals	attached	to	their	networked	computer	system.	Would	I	take
a	look	at	it?	Okay…sure.	I	was	brought	to	the	server	closet	and	saw	the	two	computers	at	the	heart	of	their	operation.
Looking	back	across	the	bustling	office	to	the	lobby,	I	saw	all	of	the	employees	and	customers	that	depended	on	this
system	working	correctly.	A	lightning	bolt	of	warning	struck	me:	“Don’t	mess	with	this,	you’re	out	of	your
league!”	Up	to	this	point,	I	had	never	worked	on	a	networked	application	server,	much	less	in	such	a	high-risk
situation.	Let’s	face	it,	I	was	as	green	as	could	be.	I	don’t	know	what	triggered	that	candid	moment	of	self-awareness.
Normally,	I’m	a	“get	in	there,	tear	it	up,	and	see	what	happens”	kinda	guy.	Maybe	it	was	the	worst-case	scenario
flashing	before	my	eyes:	a	vision	of	me	crashing	the	system	and	the	business	closing	indefinitely	until	a	high-priced
guru	could	be	flown	in	to	mend	the	situation.	I	politely	declined	the	work,	citing	my	inexperience.

Setting	Boundaries	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 277

Belle	Of	The	Ball

As	your	troubleshooting	skills	grow,	you	may	find	yourself	becoming	quite	popular.	Don’t	get	too	excited,	we’re	not
talking	“Homecoming	Queen”	popular,	but	rather	the	“Can	you	help	me	with	this	problem?”	kind.	Sorry,	but	you	can
still	buy	the	tiara	if	you	want.	While	it’s	great	to	be	wanted,	you’ll	have	to	set	boundaries	to	protect	yourself.	It’s	not
only	about	guarding	your	time,	you	also	need	to	shield	those	whom	you	intend	to	help.	When	I	declined	that
opportunity	to	work	on	the	application	server,	it	protected	me	and	the	people	I	was	trying	to	help.	A	blunder	would
have	ruined	my	reputation	(and	weekend),	along	with	their	ability	to	conduct	business.	Biting	off	more	than	you	can
chew	is	annoying	to	you	and	the	person	who	asked	for	your	assistance.	The	guiding	principle	is	“do	no	harm.”	If
you’re	there	to	help,	make	sure	that	actually	happens.

Flattery	Gets	You…In	Over	Your	Head

“You’re	so	smart,	I	just	know	you	can	fix	this!”	Everyone	likes	being	complimented,	but	it’s	also	a	recipe	for	getting	in
over	your	head.	I’ve	seen	flattery	feedback	loops	end	in	big	failures.	The	problem	is	that	if	you	assert	you	can	fix
something,	most	people	will	believe	you.	It	takes	two	to	tango:	a	person	with	a	problem	will	typically	give	you	all	the
rope	needed	to	hang	yourself.	Once	you	take	control	of	the	situation	and	start	mucking	around,	it’s	rare	for	a	customer
to	say,	“Are	you	sure	you	should	be	doing	that?”	You	might	be	the	first,	last,	and	only	line	of	defense	against	hubris.
When	you	pack	your	gear,	throw	some	restraint	into	your	toolbox.

If	you’re	not	careful,	it’s	easy	to	get	sucked	in…
(image:	Jonathan	Bean	/	Unsplash)

Leave	Yourself	An	Out

Whenever	I	go	hiking,	I	like	to	remind	myself	that	every	step	I	take	away	from	the	trailhead	will	require	a	step	back
when	I	return.	In	a	sense,	every	step	outward	is	a	commitment,	a	promise	to	take	a	step	in	the	opposite	direction.	You
can’t	hike	for	4	hours	one	way	and	then	be	angry	when	it	takes	4	hours	to	return!	Hiking	a	trail	is	a	good	example	of	a
debt	that	slowly	builds	over	time,	one	that	must	eventually	be	repaid.

Likewise,	large	repair	projects	have	implicit	obligations	that	can	be	accumulated	over	time—or	even	in	a	single
moment!	Taking	a	particular	repair	path	requires	you	to	make	a	commitment,	but	often	that	commitment	is	made
without	careful	consideration	of	the	long-term	consequences.	Certain	actions	are	difficult	to	reverse:	many	machines
are	easy	to	take	apart	but	very	difficult	to	put	back	together	(even	if	you’ve	taken	notes	or	pictures).	Removing	a
suspicious	part	may	destroy	it;	long,	complicated	procedures	that	don’t	bear	fruit	may	require	an	equal	amount	of	time
to	revert.	Back	to	our	virtue	of	maintaining	boundaries:	you	must	be	aware	of	what’s	happening	and	not	cross	over
these	lines	without	a	deliberate	plan.

Setting	Boundaries	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 278

https://unsplash.com/photos/tb1JFTlse20
https://artoftroubleshooting.com/2012/01/31/the-way-it-is-and-the-way-it-was/

So,	before	you	reach	the	“point	of	no	return,”	stop	and	ask	some	important	questions:

Will	repairing	this	system	require	downtime?	If	so,	who	will	be	affected?
How	long	will	this	repair	take?	What	if	it’s	not	completed	on	time?
What	are	the	risks	of	attempting	this	repair?	Can	it	be	reversed	and	what	are	the	steps	to	get	back	to	where	I
started?
What	if	I	am	unable	to	complete	the	repair?

Answering	these	questions	is	a	great	invitation	to	forming	a	contingency	plan,	an	“out.”	The	“when”	of	a	repair	is	often
negotiable:	even	if	a	system	is	running	slowly	or	intermittently,	it	may	still	be	doing	useful	work,	allowing	a	repair	to
be	postponed	until	a	more	convenient	time.	Of	course,	if	the	broken	system	is	already	down,	there’s	no	issue	about
interrupting	work—it’s	already	happening!

Even	when	your	hand	is	forced,	there	are	still	important	decisions	to	be	made	because	the	question	of	risk	is	present	in
any	major	repair.	I	always	favor	swapping	if	there	is	a	good	possibility	of	damaging	a	machine	while	troubleshooting:
it’s	always	better	to	attempt	those	kinds	of	fixes	in	a	low-pressure	environment.

Great	Expectations

Blessed	is	he	who	expects	nothing,	for	he	shall	never	be	disappointed.

Alexander	Pope

Perhaps	the	most	important	boundary	you	can	set	is	someone’s	expectations.	I’ve	learned	the	hard	way	the	value	of
being	modest	when	promises	to	help	are	being	made.	Besides,	it’s	always	best	to	let	your	actions	speak	for	themselves.
If	you	find	yourself	prone	to	verbal	boosterism,	at	least	tap	the	brakes	when	it	comes	to	two	crucial	subjects:	time	and
money.	These	are	always	the	most	requested	pieces	of	information	about	a	repair,	but	speaking	too	optimistically
about	either	risks	major-league	disappointment.	It’s	much	better	to	say	“I	don’t	know,	I’ll	have	to	take	a	look.”	Which
happens	to	be	the	truth:	how	can	you	really	know	how	long	a	repair	is	going	to	take	and	how	much	it’s	going	to	cost
without	a	thorough	assessment	of	the	situation?	Underestimating	the	time	of	a	repair	has	led	to	some	of	my	worst,	“in
over	my	head”	incidents.	If	you’re	hacking	away	on	a	Sunday	night,	remember	that	Monday	morning	will	eventually
come.

While	I’ve	solved	a	lot	of	tough	problems,	I	feel	that	some	of	my	most	impressive	fixes	(at	least	from	the	perspective	of
those	I	was	helping)	were	simply	the	result	of	initially	being	circumspect	about	what	I	could	accomplish.	There’s
nothing	like	starting	off	with,	“Geez…I’m	going	to	have	to	take	a	look	first…I’m	not	sure	if	I	can	help	you.”	And	then	5
minutes	later	finding	the	solution.	Standing	ovation.

The	emotional	arc	of	this	kind	of	repair	drama	is	very	satisfying	for	those	you	are	helping:	doubt	→	optimism	→
elation.	Compare	this	with	the	trajectory	of	expectations	violated:	certainty	→	doubt	→	anger.	The	funny	thing	is	that
two	troubleshooting	exercises	can	be	identical	except	for	the	expectations	created:	one	results	in	a	happy	customer,
the	other	in	an	angry	one.

Granted,	you	can	go	overboard	with	sandbagging	people’s	expectations.	It’ll	take	some	trial	and	error	to	find	the	right
balance	between	being	confident	and	being	guarded,	the	right	tone	appropriate	for	the	people	you’re	trying	to	help.	If
you’re	too	much	like	Eeyore,	the	undisputed	king	of	low	expectations,	you’ll	never	be	asked	to	do	anything!	People
will	rightly	expect	that	you	project	a	baseline	level	of	confidence	that	communicates	you	are	competent.	While	it	takes
effort	to	make	this	calibration,	the	overall	goal	of	deftly	managing	people’s	assumptions	is	worthy	of	your	time:	it’s
always	better	to	exceed	expectations	than	to	be	perceived	as	coming	up	short.	It’s	just	human	nature.

References:

Header	image:	“Gaithersburg	tennis	court”.	Chris	Chondrogiannis,	photographer.	Retrieved	from	Unsplash,
https://unsplash.com/photos/oN_rL__KiiU.

Setting	Boundaries	was	originally	published	May	15,	2013.

Setting	Boundaries	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 279

http://en.wikipedia.org/wiki/Eeyore
https://unsplash.com/photos/oN_rL__KiiU

Notes:

Setting	Boundaries	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 280

Part	4:	Cleaning	Up

The	easiest	problem	to	troubleshoot	is	the	one	that	never	happened	in	the	first	place.

Alex	Chaffee

Why	You	Should	Go	Beyond	Troubleshooting	And	“Clean	Up”

Troubleshooting	is	a	reactive	response	to	a	failure.	The	cause	and	solution	may	be	unknown,	but	the	 strategies	are
designed	to	provide	the	quickest	path	to	a	resolution.	If	all	you	did	was	use	the	strategies	and	thereby	gain	reactionary
skills,	it	would	be	an	improvement	to	your	life.	However,	as	you	grow,	your	gaze	will	turn	to	the	proactive	side	of
troubleshooting.	That’s	the	focus	of	the	“cleaning	up”	material	presented	here.

Part	4:	Cleaning	Up	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 281

https://artoftroubleshooting.com/strategies/

When	the	job	is	done,	it’s	time	to	wash	up.
(image:	Jack	Delano	/	Library	of	Congress)

My	concept	of	troubleshooting	continues	after	the	crisis	has	past	and	whatever	was	broken	is	fixed.	The	good	dentist
doesn’t	want	to	find	cavities	in	his	patients’	mouths;	the	good	firefighter	would	prefer	to	never	see	a	house	engulfed	in
flames.	Likewise,	the	good	troubleshooter	would	rather	not	have	a	system	failure	lead	to	a	crisis	(if	we’re	talking	about
what	he	or	she	would	rather	do,	it	would	likely	involve	a	beachside	view	and	a	fruity	drink	with	a	little	umbrella).	Yes,
the	virtues	and	strategies	can	help	you	be	the	hero	when	needed.	But	better	yet	is	to	never	need	to	be	a	hero	at	all.

To	achieve	this	ideal,	you	will	be	vigilant	about	learning	from	failures	(both	human	and	machine)	and	feeding	that
information	back	into	your	processes	and	procedures.	You	will	use	the	moral	authority	from	the	aftermath	of	a	crisis	to
make	needed	changes.	You	will	collect	data	so	that	you	understand	what	is	happening	at	every	level	of	your	systems
and	infrastructure.	You	will	probe	deeply	into	breakdowns	to	understand	the	root	cause.	You	will	be	anticipating
failures,	freeing	spare	resources	and	creating	procedures	to	focus	on	being	prepared	for	meltdowns.	In	short,	you	will
transcend	mere	troubleshooting.

Part	4:	Cleaning	Up	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 282

https://www.loc.gov/resource/fsac.1a34672/
https://artoftroubleshooting.com/virtues/
https://artoftroubleshooting.com/strategies/

The	Master	Troubleshooter	would	rather	be	here.	Heroism	is	for	the	unprepared.
(image:	Carol	M.	Highsmith	/	Library	of	Congress)

The	argument	for	the	reactive	side	of	troubleshooting	is	self-evident:	something	is	broke	and	needs	to	be	fixed.	The
proactive	side	requires	greater	advocacy	because	its	benefits	aren’t	as	easily	seen	and	slower	to	appear.	These	rewards
require	delayed	gratification:	making	investments	that	may	be	long	to	bear	fruit,	taking	action	based	on	incomplete
information,	putting	things	in	order	before	they	exist,	not	taking	action,	considering	alternatives.	Is	all	this	starting	to
sound	a	little	philosophical?

Know	the	reactive,	but	keep	to	the	proactive.

References:

Header	image:	Detroit	Publishing	Co,	P.	Washing	Down	Decks.	[Between	1900	and	1905]	[Photograph]	Retrieved
from	the	Library	of	Congress,	https://www.loc.gov/item/2016811292/.

Part	4:	Cleaning	Up	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 283

https://www.loc.gov/resource/highsm.11990/
https://www.loc.gov/item/2016811292/

Is	This	Normal?	An	Ode	To	Data	Collection

For	optimization,	you	need	to	gather	data	first.

Alex	Chaffee

You	Don’t	Need	Specific	Knowledge

Over	time,	you	begin	to	start	understanding	what	is	needed	for	efficient	troubleshooting	to	happen	on	a	consistent
basis.	In	my	interviews	with	great	troubleshooters,	all	have	mentioned	deep	knowledge	of	the	system	they’re	working
on	as	a	key	weapon	in	their	arsenal.	However,	I	hope	to	show	you	that	deep	experience	with	a	particular	system	is	not
necessary	to	start	and	guide	the	troubleshooting	process.	I	believe	the	right	strategies,	coupled	with	the	right	mindset
and	behaviors,	are	equal	to	experiential	troubleshooting	skills.	I’m	not	knocking	experience,	it’s	a	powerful	tool	and	I
want	you	to	tap	into	it	whenever	you	can.	I’m	just	challenging	the	notion	that	it’s	the	only	entry	to	effective
troubleshooting.	Also,	I’ve	seen	the	belief	that	experience	is	needed	as	an	excuse	to	do	nothing.	“We	don’t	know
anything	about	this	machine,	so	let’s	wait	until	Jim	takes	a	look	at	it…,”	only	to	have	Jim	arrive	and	have	no	better
ideas	than	the	strategies	presented	here.

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 284

Specific	system	knowledge	is	like	a	totally	sweet	Camaro	in	the	mating	game:	it’s	not	necessary,	but	it	doesn’t
hurt	either.

(image:	Don	O’Brien	/	CC	BY	2.0)

But,	It’s	Great	If	You	Have	It

While	specific	system	knowledge	isn’t	necessary	to	begin	troubleshooting,	it	can	be	a	huge	bonus	to	the	 virtues	and
strategies.	A	big	part	of	“specific	knowledge”	is	being	able	to	answer	the	question:	 “What	is	normal?”	You	may	think
you	know	what	is	normal,	but	unless	you’re	collecting	and	analyzing	data	about	your	systems	on	a	regular	basis,	you
don’t	have	a	clue.	Trust	me.

You	take	the	cover	off	a	machine	and	see	something	that	looks	out	of	place,	or	notice	some	strange	output,	or	hear	a
weird	noise,	or	smell	something	unsavory	coming	from	a	machine.	The	next	question	that	will	invariably	pass	your	lips
will	be:	“Is	this	normal?”	This	question	comes	up	all	the	time,	and	the	answer	is	usually	“Umm…I	don’t	know.”	While
“Is	it	plugged	in?”	may	be	troubleshooting’s	most	famous	question,	“Is	this	normal?”	is	the	one	most	likely	to	be
uttered	by	an	actual	troubleshooter	while	on	the	job.

Not	knowing	the	normal	operating	ranges	within	your	systems	will	make	it	difficult	to	determine	if	a	particular	fix	has
worked.	If	the	goal	of	troubleshooting	is	getting	back	to	normal,	and	you	don’t	know	what	that	means,	you’ll	merely	be
hoping	that	you’ve	solved	the	issue.	While	it	might	appear	to	be	“working,”	your	system	could	be	operating	in	an
entirely	new	range.	Your	fix	may	just	be	a	temporary	reprieve	before	another	catastrophic	failure.	So,	without	further
ado,	let’s	enter	the	world	of	data	collection.

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 285

http://www.flickr.com/photos/dok1/5748044553/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/virtues/
https://artoftroubleshooting.com/strategies/
https://artoftroubleshooting.com/2012/02/14/is-it-plugged-in/

Gauges	are	all	about	the	current	state.
(image:	Branden	Williams	/	CC	BY	2.0)

Gauges

Gauges	will	tell	you	“what’s	happening	now”	and	consequently	are	a	great	way	to	begin	any	data	collection	regime.
Gauges	don’t	have	a	memory	and	therefore	don’t	allow	for	comparison	to	the	past,	but	deploying	them	is	a	good	first
effort.

For	some	systems,	knowing	the	current	state	may	suffice	if	the	operating	parameters	(i.e.,	the	desired	state)	are
relatively	well	known	and	unchanging.	The	manufacturer	may	have	published	guidelines	that	can	be	a	sufficient	proxy
to	“what	is	normal.”	Or,	“normal”	may	be	well	described	in	your	own	documentation	or	known	among	your	operators.

Hopefully,	when	problems	arise,	they	will	be	visible	on	your	gauges.	Imagine	a	valve	installed	to	control	the	flow	to	a
water	delivery	system:

Diagram:	a	valve	controlling	flow	to	a	network	of	pipes.
(image:	©	Jason	Maxham)

Let’s	say	that	pipes	downstream	from	the	valve	keep	bursting	and,	after	an	investigation,	the	cause	is	suspected	to	be
that	the	the	valve	was	improperly	set	and	not	restricting	flow	adequately.	There	are	no	markings	on	the	valve,	so	it’s
really	difficult	to	know	what	flow	level	has	been	selected.	So,	you	put	a	gauge	on	the	output	side	of	the	valve	in	an
attempt	to	better	understand	the	situation:

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 286

http://www.flickr.com/photos/captbrando/3336992646/
http://creativecommons.org/licenses/by/2.0/deed.en

Diagram:	valve	with	a	gauge	to	monitor	pressure.
(image:	©	Jason	Maxham)

Before,	the	valve	setting	would	have	been	our	focus:	it	was	the	only	thing	we	could	control.	Previously,	we	had	no
information	about	the	pressure	flowing	through	the	system,	except	of	course	when	it	was	too	much	and	our	pipes	were
bursting!	Now,	our	attention	can	shift	to	the	reading	on	the	pressure	gauge,	with	the	valve	merely	being	a	means	of
selecting	the	desired	pressure	level.	The	addition	of	the	gauge	leads	to	improved	awareness	of	certain	scenarios	that
would	have	been	difficult	to	detect	in	its	absence:

1.	 If	the	gauge	reads	higher	or	lower	than	desired,	the	valve	is	not	set	properly	and	requires	adjustment.
2.	 If	adjustment	of	the	valve	has	no	impact	on	the	pressure	reading,	we	can	hypothesize	that	the	valve	is	stuck	or

broken.

Within	this	simple	system,	troubleshooting	can	now	be	done	efficiently	with	just	this	single	gauge.	Knowing	the
current	state	(i.e.,	the	pressure	reading)	will	point	the	way	to	the	problem.

Gauges	Don’t	Have	A	Memory

What	gauges	will	miss	(unless	you’re	watching	them	24/7)	are	intermittent	problems	and	erratic	behavior	in	the	run-up
to	a	failure.	Imagine	a	boiler	system	with	a	pressure	gauge	that	your	boss	has	asked	you	to	monitor.	You	look	at	the
gauge	hourly	throughout	the	morning.	As	your	omniscient	narrator,	I	was	keeping	track	of	the	readings,	even	though
you	weren’t:

Time	of
day Pressure	reading

08:00	AM 104	psi

09:00	AM 101	psi

10:00	AM 102	psi

11:00	AM 102	psi

12:00	PM 104	psi

01:00	PM 0	psi

When	you	get	back	from	lunch,	you	hear	wide-eyed	tales	from	your	co-workers	of	a	loud	explosion	in	the	boiler	room!
How	could	this	have	happened?	After	all,	you	were	diligently	monitoring	the	pressure	gauge	all	morning…

The	problem	is	that	many	failures	will	start	within	(or	near)	the	normal	operating	range,	until	breaking	out.	Again,
unless	you	had	been	present	at	the	time	of	the	failure	(in	this	case,	it’s	probably	good	you	weren’t!),	you	wouldn’t	have
seen	the	exponential	rise	in	pressure	before	the	explosion.	During	the	time	of	your	monitoring,	the	pressure	readings
were	in	a	tight	group	between	101-104	psi.	There	was	a	slight	uptick	at	noon	to	104	psi,	but	from	these	data	points
alone	it	would	be	difficult	to	tell	if	that	was	a	harbinger	of	trouble	(plus	we	saw	a	reading	of	104	psi	at	8am).	So,	you
arrived	back	from	lunch	to	an	exploded	boiler…and	unfortunately	a	gauge	that	now	reads	zero	(if	it	can	be	found
among	the	wreckage).

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 287

In	the	aftermath	of	an	incident,	knowing	the	current	state	isn’t	very	useful.	What	the	gauge	reads	 now	isn’t	nearly	as
useful	as	what	it	was	reading	between	noon	and	the	time	of	the	explosion.	If	you	had	an	automated	data	collector	with
graphing	capabilities,	you	would	have	seen	this:

Graph:	pressure	readings	during	the	noon	hour.
(image:	©	Jason	Maxham)

This	is	so	much	more	useful	than	just	knowing	the	current	state!	You	can	see	the	pressure	building	in	the	run	up	to	the
explosion	and	begin	to	form	a	theory	about	its	cause.	Here	we	can	see	a	spike	to	200	psi	around	12:10pm	and	then	the
pressure	briefly	returns	to	a	normal	level.	Perhaps	a	safety	release	valve	kicked	in	and	brought	the	pressure	back	down?
After	that,	the	pressure	hovers	around	150	psi,	until	going	exponential.	If	there	was	a	safety	release	valve,	it	clearly
failed	this	second	time	around.	Looking	at	the	graph,	it’s	easy	to	pinpoint	the	time	of	the	explosion	as	occurring
between	12:55pm	and	1:00pm.

By	the	way,	I	have	seen	this	particular	failure	pattern	so	many	times	in	so	many	different	contexts.	A	system	will	be
operating	normally,	then	experience	some	kind	of	shock.	After	the	shock,	it	will	operate	in	a	new,	above-or-below-
average	range	for	a	short	period	of	time,	before	experiencing	a	complete	meltdown.

So	Many	Things	To	Track

Gathering	and	analyzing	data	has	an	opportunity	cost,	so	you’ll	want	to	be	judicious	about	how	you	allocate	the	time
you	devote	to	a	data	collection	project.	Also,	in	even	the	simplest	of	systems,	the	number	of	different	things	that	can
potentially	be	monitored	and	tracked	is	infinite.	To	prove	this	to	you,	take	a	look	at	this	belt-driven	contraption:

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 288

Even	within	this	simple	system,	there	are	an	infinite	number	of	things	that	could	be	monitored.
(image:	Shaun	Wallin	/	CC	BY	2.0)

Let’s	say	you	wish	to	monitor	and	collect	data	on	how	fast	that	longest	belt	is	spinning.	To	do	this,	you’ll	measure	the
length	that	the	belt	travels	past	your	monitoring	point	within	a	given	time	period.	Depending	on	the	problems	you’re
trying	to	spot,	just	this	parameter	alone	could	result	in	an	infinite	number	of	possible	data	collection	schemes.	Perhaps
the	belt	occasionally	slips	and	stops	moving	momentarily	(and	you’d	like	to	know	when	and	how	often),	but	that’s	only
something	you’ll	notice	if	you	look	at	very	small	time	slices	(like	sub-second).

Different	sampling	rates	(i.e.,	the	period	between	making	subsequent	observations)	can	lead	to	an	endless	number	of
possible	data	collection	schemes.	You	could	observe	how	much	belt	passes	an	observation	point	over	the	course	of	a
second,	1/10	second,	1/100	second,	1/1000	second,	etc.	to	infinitely	small	time	periods.	Smaller	time	slices	might	not
necessarily	be	useful,	but	each	sampling	rate	would	give	you	slightly	different	information.	And	this	is	just	a	lone	belt
on	a	simple	whoozy-whatzit.	Imagine	the	data	collection	possibilities	in	an	automobile	factory	or	an	oil	refinery.
Infinity	times	infinity!

Start	Small

Given	that	the	amount	of	data	you	could	collect	on	a	machine	is	infinite,	you’re	going	to	need	to	find	a	way	to
prioritize	and	make	what	you	do	collect	manageable.	One	very	efficient	way	is	to	let	your	breakdowns	dictate	what
gets	watched.	Often	when	troubleshooting,	you’ll	find	yourself	saying	“I	wish	I	knew	what	was	happening	to	this
before	the	failure…”	Those	moments	are	great	indicators	of	what	to	monitor	in	the	future.	There	is	little	wasted	effort
with	a	scheme	like	this:	you’re	focusing	on	things	that	actually	have	tripped	you	up	in	the	past!

I	think	you	can	do	yourself	one	better	by	proactively	surveying	your	systems	for	things	to	monitor	so	you’ll	be	ready
when	the	next	crisis	occurs.	If	you	have	even	a	passing	familiarity	with	a	system,	you	can	usually	make	an	educated
guess	about	what	you’d	like	to	know	about	in	the	event	of	a	breakdown	(run	through	some	imaginary	scenarios	in	your
head	or	review	your	recent	incidents	for	ideas).	From	there,	let	real	problems	guide	the	additional	parameters	you	add
to	your	data	collection	regimen.

Baselines	Verify	Fixes

For	complicated	systems,	it	can	be	difficult	to	know	if	a	fix	has	worked	without	a	good	data	collection	system	in	place.
I’ve	worked	on	problems	where	I	was	sure	I	had	nailed	a	fix	only	to	have	things	unravel	later.	Over	time,	I	began	to
notice	a	huge	difference	between	systems	where	we	had	solid	data	coverage	and	those	where	we	were	“flying	blind.”
The	data	advantage	operated	on	two	levels:

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 289

http://www.flickr.com/photos/43803060@N00/505086691/
http://creativecommons.org/licenses/by/2.0/deed.en

1.	 Good	data	leads	the	way	to	the	discovery	of	the	cause.
2.	 Good	data	shows	you	if	a	fix	is	actually	working.

Both	of	these	benefits	immensely	increase	your	confidence	in	your	repairs.	It	all	comes	back	to	the	theme	of	this
section:	if	you	can’t	say	what	is	“normal”	you	won’t	really	know	if	the	repaired	system	is	functioning	“normally.”

When	your	efforts	finally	pay	off,	you’ll	get	graphs	that	look	like	this:

Graph:	a	data	collection	victory.
(image:	©	Jason	Maxham)

Notice	how	everything,	from	regular	operation	before	the	incident,	to	the	onset	of	trouble,	to	the	meltdown,	to	the
recovery	after	the	fix,	is	so	visually	apparent	in	this	graph.	It’s	abundantly	clear	what	“normal”	was	before	the
breakdown,	and	it’s	just	as	clear	that	you	have	indeed	returned	to	that	normalcy	after	the	repair.	When	this	happens	for
the	first	time,	expect	to	get	a	little	choked	up.	Beautiful.

War	Correspondent

During	crises,	you	should	be	collecting	a	very	specific	type	of	data:	what	fixes	you’ve	tried	and	when.	I’ve	been	called
in	to	troubleshoot	some	very	hectic	situations	and	gone	immediately	into	“let’s	try	this,	then	let’s	try	this,	and	then	how
about	this”	mode.	The	energy	of	the	crisis	fuels	an	endless	stream	of	ideas	and	avenues	to	pursue.	However,	if	the
problem	persists	and	you	don’t	find	a	quick	fix,	you	may	find	that	you	begin	to	accidentally	repeat	yourself.	You	may
catch	yourself	in	a	moment	of	deja	vu	and	ask,	“Didn’t	we	already	try	this?”	To	avoid	this	looping,	I	suggest	you	start	a
simple	troubleshooting	log	at	the	beginning	of	any	crisis.	If	you	want	to	call	it	“My	very	secret	and	very	special	diary	of
my	most	precious	fix-it	feelings,”	that’s	your	prerogative.	Oh,	and	this	idea	isn’t	only	for	crises:	any	long-term
troubleshooting	project	benefits	from	such	a	record	of	happenings.

A	related	concept	is	the	maintenance	log,	which	is	a	list	of	changes	made	to	a	machine,	including	when	they	were
made	and	by	who.	You	might	have	seen	these	pasted	in	the	interior	of	a	service	panel	or	dangling	from	a	clipboard
nearby.	Along	with	other	maintenance	records,	these	are	a	very	valuable	source	of	data	that	are	great	for	answering	the
question:	“What’s	changed?”

Start	Now

The	past	will	be	murky	if	you	weren’t	keeping	track	of	it,	so	orient	yourself	to	a	bright	future	and	commit	to	start
collecting	data.	Yesterday	may	remain	shrouded	in	mystery,	but	at	least	you’ll	have	data	to	make	comparisons	for	the
next	incident.

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 290

https://artoftroubleshooting.com/2013/03/05/whats-changed/

References:

Header	image:	Leffler,	W.	K.,	photographer.	NATIONAL	OCEANOGRAPHIC	AND	SCIENCE	CENTER	–
seismograph	report	of	L.A.	earthquake.	1971.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017646241/.

Is	This	Normal?	An	Ode	To	Data	Collection 	was	originally	published	April	11,	2012.

Notes:

Is	This	Normal?	An	Ode	To	Data	Collection	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 291

https://www.loc.gov/item/2017646241/

Zen	And	The	Art	Of	Routine	Maintenance

Routine	maintenance	is	always	a	good	thing	to	do.	It’s	a	pain...but	it	needs	to	be	done.

Austin	Quade

I’ve	heard	that	being	a	doctor	can	sometimes	be	a	downer	because	all	day	long	you	are	seeing	people	at	their	worst.
No	one	randomly	schedules	an	appointment	with	their	physician	to	enthusiastically	reveal	how	good	they’re	feeling!

Likewise,	if	you’re	called	on	to	troubleshoot,	it’s	because	something	has	gone	wrong.	Your	job	or	business	may	be	on
the	line.	Troubleshooting	can	be	fun,	especially	if	you	bring	a	sense	of	curiosity	and	discovery	to	the	enterprise.
However,	the	baseline	experience	usually	involves	someone	who	has	been	inconvenienced	by	a	machine	failure.	We
only	bother	to	fix	things	that	matter	to	someone.

All	this	drama	can	be	an	invitation	to	heroism,	but	it’s	best	to	not	get	hooked	on	the	excitement.	If	you	find	yourself	in
crisis	mode	all	the	time,	you’re	either	an	adrenaline	junkie	or	haven’t	done	enough	preventative	maintenance.	You	can
look	at	expert	troubleshooting	skills	like	having	a	black	belt	in	Kung	Fu:	it’s	nice	to	know	that	you’ll	be	able	to	kick
some	butt	when	the	time	comes.	However,	if	you	find	yourself	in	drunken	bar	brawls	all	the	time,	you’ve	probably

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 292

tuned	out	when	your	sifu	emphasized	self-control	and	peaceful	ways	to	avoid	confrontation.

As	a	skilled	troubleshooter,	it’s	great	when	you	can	step	in	and	be	the	hero.	Better	still	is	to	prevent	trouble
from	ever	starting.

(image:	Andrew	Magill	/	CC	BY	2.0)

In	his	introduction	to	The	Art	of	War,	Thomas	Cleary	relates	this	parable	relevant	to	our	topic:

According	to	an	old	story,	a	lord	of	ancient	China	once	asked	his	physician,	a	member	of	a	family	of	healers,
which	of	them	was	the	most	skilled	in	the	art.	The	physician,	whose	reputation	was	such	that	his	name	became
synonymous	with	medical	science	in	China,	replied,

“My	eldest	brother	sees	the	spirit	of	sickness	and	removes	it	before	it	takes	shape,	so	his	name	does	not	get	out	of
the	house.

“My	elder	brother	cures	sickness	when	it	is	still	extremely	minute,	so	his	name	does	not	get	out	of	the
neighborhood.

“As	for	me,	I	puncture	veins,	prescribe	potions,	and	massage	skin,	so	from	time	to	time	my	name	gets	out	and	is
heard	among	the	lords.”

Thomas	Cleary,	The	Art	Of	War	1

When	it	comes	to	troubleshooting,	you	want	to	be	like	the	eldest	brother.	Routine	maintenance	is	your	opportunity	to
prevent	trouble	before	it	has	a	chance	to	take	shape.

Maintenance	Windows

A	maintenance	window	is	a	prearranged	time	when	preventative	maintenance	is	done.	Because	a	machine	is	idled,
work	will	be	slowed	for	the	duration	of	the	window.	You	wouldn’t	agree	to	this	without	some	upside:	the	benefit

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 293

http://en.wikipedia.org/wiki/Sifu
http://www.flickr.com/photos/amagill/3225245640/
http://creativecommons.org/licenses/by/2.0/deed.en

gained	is	that	you	will	reduce	costly	unscheduled	downtime.	As	clients	come	first,	don’t	expect	that	you’ll	be	able	to
have	your	maintenance	windows	at	convenient	times	(for	you),	like	on	a	Monday	morning	from	9am-11am.	If	you	can
convince	management	of	the	benefits,	expect	something	more	like	a	Sunday	night	when	the	business	is	closed.	Again,
tradeoffs.	Would	you	rather	give	up	a	Sunday	night	once	a	month,	or	see	your	co-workers	in	their	pajamas	because	the
team	had	to	be	called	in	on	a	Tuesday	at	3am	for	a	meltdown?	Unless	you	have	co-workers	who	look	good	in	their
pajamas,	the	choice	is	clear.	For	some	companies,	the	cost	of	unscheduled	downtime	can	be	in	the	millions	of	dollars
per	hour.	All	it	will	take	is	a	couple	of	high-profile	incidents	to	sell	your	“radical”	notion	of	using	maintenance
windows	as	a	preventative	measure.

Any	modern	production	environment	will	have	more	opportunities	for	maintenance	than	time	will	allow.
You’ll	need	to	prioritize…

(image:	©	Jason	Maxham)

Planning	A	Maintenance	Window

There	is	an	art	to	planning	and	executing	a	maintenance	window.	Typically,	the	time	you	have	to	work	with	is	finite
and	fixed	on	the	calendar.	If	you	are	fastidious	about	collecting	all	of	the	possible	maintenance	tasks	you	could	pursue,
you	may	find	it	exceeds	your	allotted	window	duration	many	times	over.	That’s	okay,	that	will	simply	force	you	to
decide	what’s	most	important.	Over	time,	you’ll	get	an	intuitive	sense	of	what	to	prioritize	by	this	formula:

Chance	of	Failure	×	Cost	of	the	Failure	=	Expected	Cost	of	the	Failure

Let’s	work	through	an	example	of	choosing	between	some	possibilities	for	a	maintenance	window.	You	are	employed
at	Widget	Inc.	and,	after	some	costly	downtime,	you	have	negotiated	a	monthly	1-hour	maintenance	window	from
management.	On	the	top	of	your	list	are	the	following	two	items:

1.	 Replace	the	worn	ball	bearings	on	the	factory’s	conveyor	belt:

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 294

(image:	Pelle	Sten	/	CC	BY	2.0)

2.	Upgrade	the	software	that	controls	your	computer-controlled	routers	(in	manufacturing,	a	 router	is	a	tool	used	to
hollow	out	a	piece	of	hard	material,	like	wood	or	metal):

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 295

http://www.flickr.com/photos/pellesten/6777882164/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Router_(woodworking)

(image:	Fagor	Automation	/	CC	BY-ND	2.0)

Given	that	we’ll	only	have	1	hour	to	do	maintenance,	how	do	we	choose?	We’ll	start	with	a	basic	analysis,	using	the
formula	above.	For	the	bearings	on	the	conveyor	belt,	we’ll	note	that	there’s	only	one	conveyor	belt	in	the	whole
factory.	When	it’s	down,	the	company	is	effectively	shut	down.	To	bootstrap	a	comparison,	we’ll	roughly	calculate	the
cost	by	spreading	the	company’s	annual	revenue	over	each	hour,	using	that	to	estimate	the	cost	of	an	incident.	If	an
unscheduled	bearing	change	in	an	emergency	situation	will	take	about	6	hours	(¼	day)	and	the	company	makes	$100
million	dollars	a	year,	we	can	get	a	sense	of	how	much	an	incident	will	cost:

(.25	days	÷	365	days)	×	$100,000,000	annual	revenue	=	$68,493.15

The	automated	routers	are	a	different	story:	the	company	has	several	of	these	machines	and	if	one	malfunctions,	the
aggregate	speed	of	production	is	reduced	by	1/n	(where	n	is	the	number	of	machines).	There	are	10	machines	and	so	if
1	breaks	down,	the	slowdown	will	be:

1	÷	10	=	10%	reduction	in	line	speed

Let’s	say	it	takes	one	day	to	repair	a	router	in	the	case	of	an	unplanned	outage.	Now,	we	can	estimate	the	cost	of
downtime:

(1	day	÷	365	days)	×	(1/10)	×	$100,000,000	annual	revenue	=	$27,397.26	per	incident

At	this	point,	if	only	one	maintenance	item	could	be	accomplished,	you’d	be	biased	towards	servicing	the	bearings
($68,493	>	$27,397).	By	the	way,	the	cost	of	the	1-hour	maintenance	window	itself	can	be	calculated	as	well:

((1	÷	24)	÷	365	days)	×	$100,000,000	annual	revenue	=	$11,415.53	per	1-hour	maintenance	window

That’s	a	pretty	expensive	maintenance	window!	It	would	imply	that	incidents	with	an	expected	cost	less	than	the	cost
of	the	window	shouldn’t	be	given	time	for	maintenance.	However,	there	are	many	other	things	to	consider	when
calculating	the	“cost”	of	downtime.	Idling	your	workforce,	missing	deadlines,	and	many	more	factors	will	result	in
expenses	both	tangible	and	intangible	(e.g.,	loss	of	goodwill	with	a	key	client).

These	cost	of	downtime	calculations	are	a	good	first	start,	but	you	may	have	noticed	one	critical	piece	of	information
missing:	the	relative	probability	of	each	kind	of	failure.	You	may	be	drawn	to	changing	the	bearings,	given	that	the	cost
of	a	bearing	failure	on	the	assembly	line	is	2.5	times	more	expensive	than	a	router	failure	($68,493	÷$27,397	=	2.5).
But,	if	a	router’s	rate	of	failure	was	2.5	times	that	of	the	bearings,	they	would	extract	an	equal	cost.	One	more	thing	to
think	about	is	the	relative	number	of	each	item	within	your	the	total	infrastructure.	Let’s	say	that	there	are	20	bearing

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 296

http://www.flickr.com/photos/fagorautomation/5621784846/
http://creativecommons.org/licenses/by-nd/2.0/deed.en

units	in	the	assembly	line	(and	10	routers,	as	previously	noted).	Our	calculations	need	to	take	into	account	that	there
are	twice	as	many	bearings	that	could	fail.

We’ve	come	a	long	way	in	our	analysis,	but	our	equations	are	still	missing	some	information:

Expected	cost	of	a	bearing	failure	=	20 y	×	$68,493
Expected	cost	of	all	routers	failures	=	10 z	×	$27,397

Where	y	and	z	represent	the	rate	of	failures	of	the	bearings	and	the	routers,	respectively.	Even	at	this	point,	we	can	do
some	quick	math	to	guide	our	decision.	What	would	the	failure	rates	of	bearings	and	routers	have	to	be	for	their	total
cost	to	be	equal?

10z	×	$27,397	=	20y	×	$68,493

z	×	$273,970	=	y	×	$1,369,860

z	=	($1,369,860	÷	$273,970)	×	y

z	=	5y

For	these	two	scenarios	to	be	equally	costly,	a	router	would	need	to	be	5	times	more	likely	to	fail	than	a	set	of
bearings.	Based	on	your	experience	with	bearings	and	routers,	this	is	one	more	way	to	evaluate	your	options	without
historical	failure	data.

Known	Unknowns

When	the	chances	of	various	failure	scenarios	are	unknown,	like	in	our	example	above,	choosing	maintenance	tasks
will	a	judgement	call.	If	you	are	just	starting	to	track	your	breakdowns	in	a	systematic	way,	you’ll	need	to	estimate	and
then	revise	later	as	the	evidence	accumulates	(see	“Is	This	Normal?”	for	ideas	and	inspiration	on	data	collection).	Even
if	you	have	been	collecting	data,	there	will	be	some	failures	that	have	never	happened,	meaning	you’ll	be	trying	to
prevent	the	unknown.	If	that	seems	like	an	amorphous	thing	to	advocate	for,	backing	you	is	the	collective	experience
of	millions	of	technicians	who	know	that	an	“ounce	of	prevention	is	worth	a	pound	of	cure.”	It’s	better	to	deal	with	a
machine	on	your	terms,	not	in	the	middle	of	something	important	like	trying	to	meet	a	deadline.	If	you	forego	regular
maintenance,	you’re	basically	letting	the	machine	decide	how	it	will	inconvenience	you.	Personally,	I’d	rather	be	in
control	of	the	timing.	Where	to	start?	If	you’ve	been	around	your	organization	for	any	length	of	time,	you’ll	probably
have	an	intuitive	sense	of	where	to	devote	your	maintenance	resources.	Otherwise,	do	an	inventory	and	rank	your
systems	according	to	cost	of	downtime.

The	Right	Frequency

If	you’ve	ever	changed	the	oil	in	your	vehicle,	congratulations,	you’ve	conducted	a	maintenance	window.	You	set
aside	time	(maybe	when	you	passed	an	oil	change	shop	and	looked	at	the	“Next	Oil	Change”	sticker	in	shock)	and
your	car	was	unusable	while	the	oil	was	being	changed.	You	weighed	the	inconvenience	of	spending	time	drinking
bad	coffee	and	reading	old	magazines	in	the	waiting	room	of	a	service	station	against	the	cost	of	an	engine	failure.

Speaking	of	changing	your	oil,	that’s	a	great	example	of	where	you	have	to	decide	how	closely	you	adhere	to	a
manufacturer’s	guidelines.	Although	every	mechanic	I’ve	talked	with	endorses	frequent	oil	changes,	they	are	quick	to
admit	that	your	owner’s	manual	may	recommend	a	frequency	that	is	excessive.	You	might	notice	the	difference	if	you
drove	your	car	for	2	million	miles,	but	consumers	(buying	new)	only	keep	their	cars	for	an	average	of	6	years2.

In	my	experience,	I’ve	seen	recommended	maintenance	intervals	range	from	opportunistic	revenue	generators	to
woefully	inadequate	(or	non-existent).	On	the	opportunistic	side,	my	printer	is	always	telling	me	to	change	the	ink
cartridges.	I’m	not	surprised,	given	that	the	liquid	inside	is	worth	more	than	gold.	Parts	and	service	can	be	an	important
revenue	stream	for	a	company,	so	don’t	be	shocked	when	encountering	aggressive	replacement	schedules.	Given	the
economic	incentives	at	play,	be	sure	to	deploy	an	appropriate	amount	of	skepticism	and	double	check	the	need	against
your	own	failure	data.	Also,	keep	in	mind	that	routine	maintenance	doesn’t	have	to	expensive,	I	would	do	a	quick
visual	inspection	of	our	office	infrastructure	on	a	weekly	basis	that	took	no	more	than	10	minutes.

On	the	other	side	of	the	coin,	you	may	find	a	manufacturer	recommends	a	maintenance	schedule	that	allows	an

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 297

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
http://articles.latimes.com/2012/feb/21/business/la-fi-mo-holding-cars-longer-20120221
http://www.popsci.com/gear-gadgets/article/2008-02/grouse-inkjet-refill-racket
https://artoftroubleshooting.com/2011/09/20/skepticism/

unacceptable	number	of	failures.	Maybe	their	recommendations	are	geared	towards	the	“average”	customer,	while
your	usage	profile	is	more	strenuous.	I’ve	also	seen	systems	that	don’t	come	with	any	maintenance	advice	at	all.	If	you
are	dealing	with	a	custom-made	machine	that	you	cobbled	together,	obviously	the	ideal	maintenance	schedule	is
something	unknown	that	will	need	to	be	discovered.	By	you!

Go	Ahead	And	Let	It	Fail

If	treated	it	as	a	learning	opportunity,	you	don’t	need	to	fear	failure.	This	applies	to	life	as	well	as	routine	maintenance.
When	Discovery	Mining	first	started	out,	one	of	the	most	annoying	things	to	maintain	was	the	printer.	The	darn	thing
was	always	breaking	down	at	the	most	inopportune	times—usually	right	before	an	important	sales	meeting.	Of	course,
when	that	happened,	it	was	a	“drop	everything”	emergency	that	required	immediate	attention.

I’ve	talked	before	about	“listening	to	machines”	but	this	printer	was	a	real	chatterbox	when	it	came	to	error
messages.	Just	like	being	trapped	in	a	boring	conversation	at	a	party,	you	eventually	tuned	it	out.	It	wanted	everything
to	be	replaced,	on	a	constant	basis.	At	first	I	was	responsive,	but	there	didn’t	seem	to	be	a	tight	correlation	between
replacing	parts	and	preventing	breakdowns.	I	began	to	suspect	the	rampant	“replace	X,	it	will	fail	soon”	error	messages
were	more	of	a	revenue-enhancing	ploy	by	the	printer	company.

My	solution	was	to	get	a	second	printer.	This	put	an	end	to	the	crises:	if	one	of	the	printers	was	malfunctioning,	you
could	always	use	the	other	one.	I	also	started	to	note	(but	not	act	on)	the	various	error	messages,	instead	letting	each
printer	go	until	it	couldn’t	print	any	more.	Doing	this,	I	began	to	get	a	better	sense	of	what	was	required	to	keep	these
printers	up	and	running.	That	is,	which	preventative	maintenance	items	were	worth	my	time.	The	buffer	provided	by
the	second	printer	gave	me	the	breathing	room	to	learn	what	was	really	going	on.

Adding	a	layer	of	redundancy	is	a	general	method	to	enhance	(or	even	replace)	your	routine	maintenance	program.	If
the	cost	of	failures	is	low	and	swapping	is	easy,	then	consider	the	very	efficient	“do	nothing”	protocol	(patent	pending).
If	you	think	about	it,	this	is	the	scheme	most	people	apply	to	their	TV	remote	control.	You	don’t	test	the	batteries	in
your	TV	remote	every	day	(if	you	do,	get	help	now!).	When	the	batteries	die,	you	simply	replace	them.	Except	for	the
pain	of	having	to	leave	the	couch,	a	dead	battery	in	this	context	is	no	big	deal.	Another	bonus	is	maximizing	the	use	of
your	resources:	you	get	the	absolute	most	out	of	something	by	using	it	until	the	end.

Put	The	Routine	In	Your	Maintenance

I’ll	leave	this	discussion	by	noting	that	periodic	maintenance	requires	discipline.	If	you’ve	taken	the	time	to	study	a
system	and	determine	that	maintenance	will	head	off	trouble,	but	then	fail	to	do	it…	This	is	the	most	tragic	kind	of
failure,	when	you	know	but	fail	to	act.	Make	it	easy	on	yourself,	set	up	automatic	reminders.	I	also	favored	vendors	that
would	were	good	at	keeping	to	a	maintenance	schedule,	independent	of	me	badgering	them.	Find	people	like	that,	and
you’ll	vacation	with	confidence!

References:

Header	image:	Detroit	Publishing	Co.	Oiling	up	before	the	start.	ca.	1904.	[Photograph]	Retrieved	from	the	Library
of	Congress,	https://www.loc.gov/item/2016803601/.
1	Sun	Tzu,	translated	by	Thomas	Cleary,	The	Art	of	War	(Boston:	Shambhala,	2005),	pg.	xi.
2	Jerry	Hirsch,	“Americans	keep	their	new	cars	for	almost	six	years,” 	Los	Angeles	Times,	February	21,	2012.

Zen	And	The	Art	Of	Routine	Maintenance 	was	originally	published	May	1,	2012.

Notes:

Zen	And	The	Art	Of	Routine	Maintenance	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 298

https://artoftroubleshooting.com/2011/12/06/the-phone-is-ringing-so-answer-it/
https://www.loc.gov/item/2016803601/
http://articles.latimes.com/2012/feb/21/business/la-fi-mo-holding-cars-longer-20120221

Storm’s	A-comin’

I’m	not	surprised	that	I’m	often	surprised.

Alex	Chaffee

Carnies	get	nervous	when	an	accident	happens,	because	they	say	that	“Bad	luck	happens	in	threes.”	Even	if	you’ve
killed	someone	whose	first	name	is	Darth,	there’s	always	another	Sith	Lord	running	around.	When	you	first	see	an	ant
crawling	across	your	kitchen	floor,	you	know	there	are	thousands	more,	lurking	unseen.	The	darkening	of	the	horizon
as	storm	clouds	appear	foreshadows	rain.	The	small	tip	of	an	iceberg	peeking	above	the	water	hints	at	a	much	larger
threat	below	the	surface.

These	leading	edge	moments	of	discovery	are	first	encounters	with	things	yet	to	come.	When	troubleshooting,	we	also
have	these	initial	contacts	with	circumstances	that	may	foretell	of	larger	disasters.	As	my	troubleshooting	skills	grew,	I
became	increasingly	skeptical	of	“one-off”	breakdowns.	There	was	usually	more	to	the	story.	If	you’re	curious	and
tuned	into	what’s	going	on,	you	may	be	able	to	mitigate	an	impending	disaster.

This	section	isn’t	just	for	professional	troubleshooters	who	work	in	high-risk	industries	(like	nuclear	or	petroleum),
because	machine-related	“disasters”	can	be	lurking	anywhere	in	your	life.	If	the	brakes	failed	on	your	car	or	if	your
house	started	on	fire	because	of	a	missed	warning	sign,	it	might	not	be	featured	on	the	front	page	of	The	New	York
Times,	but	it	would	be	still	be	a	big	deal—to	you!

Storm’s	A-comin’	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 299

http://starwars.wikia.com/wiki/Rule_of_Two

As	you	can	see,	there’s	always	much	more	below	the	water.
(image:	NOAA’s	National	Ocean	Service	/	CC	BY	2.0)

Look	For	The	Signs

After	something	has	been	successfully	repaired,	it’s	a	natural	instinct	to	take	it	easy.	The	excitement	is	over,	so	you	grab
a	cold	one,	pat	yourself	on	the	back,	and	put	your	feet	up	on	the	desk.	But,	you	may	want	to	reconsider	that	habit.
That’s	because	large	disasters	often	start	out	with	small,	“normal”	failures.	Here’s	some	insight	from	the	Deepwater
Horizon	accident,	the	largest	marine	oil	spill	in	the	history	of	the	petroleum	industry:

About	seven	hours	before	the	Gulf	of	Mexico	oil	well	blowout	of	2010,	a	group	of	four	company	VIPs
helicoptered	onto	the	drilling	rig	in	question,	the	Deepwater	Horizon.	They	had	come	on	a	“management	visibility
tour”	and	were	actively	touring	the	rig	when	disaster	struck.

There	were	several	indications	in	the	hours	before	the	blowout	that	the	well	was	not	under	control,	in	fact	that	it
was	“flowing”,	that	is,	that	oil	and	gas	were	forcing	their	way	upwards	from	several	kilometers	below	the	sea	floor.
These	indicators	were	all	either	missed	or	misinterpreted	by	the	rig	staff.	The	touring	VIPs,	two	from	BP	and	two
from	the	rig	owner,	Transocean,	had	all	worked	as	drilling	engineers	or	rig	managers	in	the	past	and	had	a
detailed	knowledge	of	drilling	operations.	Had	they	focused	their	attention	on	what	was	happening	with	the	well,
they	would	almost	certainly	have	recognized	the	warning	signs	for	what	they	were,	and	called	a	halt	to
operations.	But	their	attention	was	focused	elsewhere,	and	an	opportunity	to	avert	disaster	was	lost.

Andrew	Hopkins,	“Management	Walk-Arounds:	Lessons	from	the	Gulf	of	Mexico	Oil	Well	Blowout” 	1

Maybe	you’re	thinking,	“Wait	a	second,	how	can	this	be	practical	advice?	There	are	so	many	little	things	that	go	wrong
in	the	course	of	a	day.	Not	all	of	them	lead	to	deadly	disasters!”

You’re	right,	not	everything	that	goes	wrong	is	the	harbinger	of	a	catastrophe.	If	you’re	in	charge	of	an	operation	that
carries	the	risk	of	a	major	incident,	the	likes	of	which	would	show	up	on	the	evening	news	(I’m	talking	about	sugar
mills,	oil	rigs,	nuclear	power	plants,	etc.),	you	need	to	be	engaged	with	the	field	of	 process	safety.	Any	industry	with
significant	risks	of	a	major	human	or	environmental	disaster	should	have	safety	as	a	core	part	of	their	culture,	woven
into	every	process.	That’s	beyond	the	scope	of	this	work,	so	I	invite	you	to	do	your	own	reading	in	this	area.

Storm’s	A-comin’	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 300

http://www.flickr.com/photos/usoceangov/8290528771/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
http://www.popularmechanics.com/science/4272856
http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
http://en.wikipedia.org/wiki/Chernobyl_disaster
http://en.wikipedia.org/wiki/Process_safety

Most	disasters	have	humble	origins.
(image:	Jonathan	Perera	/	CC	BY	2.0)

Instead,	I	want	to	make	the	connection	with	you	in	the	role	of	a	troubleshooter.	Because	catastrophes	frequently	begin
with	small	breakdowns,	they’re	exactly	the	kind	of	things	that	front-line	troubleshooters	will	be	first	on	the	scene	to
investigate.	There	are	certain	kinds	of	failures	which	should	prompt	you	to	dig	deeper,	as	explained	in	the	book
Recognizing	Catastrophic	Incident	Warning	Signs:

There	are	many	types	of	warning	signs	[for	catastrophic	incidents],	including	the	following:
·	Early	indicators	of	failure	that	provide	opportunities	to	take	appropriate	action.	Process	equipment	that	is	not
functioning	properly	may	be	prone	to	failure.	Organizations	sometimes	ignore	these	on	the	basis	that	they	will
address	the	issues	later	(or	if	the	problem	escalates).
·	Suggestions	that	a	major	incident	may	be	imminent.	An	example	might	include	a	piece	of	process	equipment
reaching	its	end-of-cycle	or	retirement	limit.
·	Indicators	that	are	less	obvious	and	require	detailed	analysis.	For	this	reason,	a	practical	follow-up	option	is	to
conduct	an	audit	to	help	ensure	that	programs	and	systems	are	managed	effectively.
·	Seemingly	insignificant	issues	that,	when	combined	with	other	warning	signs,	suggest	a	breakdown	of
management	systems.
·	Actual	incidents	with	measurable	consequences.	If	we	ignore	these,	they	can	increase	in	frequency	or	magnitude
and	contribute	to	a	catastrophic	incident.

Center	for	Chemical	Process	Safety,	“Recognizing	Catastrophic	Incident	Warning	Signs	in	the	Process
Industries”	2

I’ll	add	a	few	more	items	to	this	list	of	warning	signs:

New	failure	conditions:	whenever	something	breaks	down	in	a	way	that	you	haven’t	encountered	before,	watch
out.
Malfunctions	that	span	multiple	systems:	problems	that	strike	in	multiple	places	simultaneously	are	a	big	red	flag
for	a	coming	catastrophe.
Weird	stuff:	intermittent	problems,	issues	that	seem	to	magically	resolve	themselves	(i.e.,	you	investigate	and
everything	seems	to	be	fine),	failures	that	are	difficult	to	quantify	because	of	conflicting	or	incomplete	reports,	etc.

Dodging	Icebergs

Storm’s	A-comin’	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 301

http://www.flickr.com/photos/kianjacy/5787021923/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2013/02/14/failing-to-fail-duplicate-the-problem-part-2/

That	little	bit	of	ice	that	sticks	above	the	water	is	the	phone	call	from	a	field	technician	about	an	unexplained
interruption	at	a	customer	site.	It’s	a	couple	of	identical	bug	reports	from	your	best	clients.	It’s	the	“check	engine”	light
coming	on	in	your	car.	It’s	that	“something	weird”	you’ve	never	seen	before	in	the	plant.

Perhaps	a	“major	incident”	in	your	line	of	work	might	not	be	the	end	of	the	world,	but	it	might	inconvenience
customers,	put	you	out	of	business,	or	cause	injury.	Smaller	organizations	may	have	the	same	operational	risks	as	large
ones,	but	few	or	no	staff	dedicated	to	“process	safety.”	In	these	cases,	those	called	on	to	troubleshoot	may	be	the	only
ones	with	the	visibility	to	take	that	extra	step	and	flag	a	situation	for	further	review,	before	it	gets	out	of	hand.
Awareness	is	key:	I	just	want	to	plant	the	seed	in	your	mind	that	you	can	ask,	“Is	this	part	of	something	much	bigger?”

Stay	Awake	A	Little	Longer	And	Run	The	Numbers

Whenever	you	see	something	that	matches	the	“warning	signs”	list	above,	it’s	time	to	take	action.	When	I	was	in
charge,	I	always	liked	to	reserve	extra	time	after	troubleshooting	for	a	brief	audit	of	our	infrastructure:	a	quick	once
over	to	make	sure	everything	was	in	order.

Easy-to-access	historical	records	and	automated	monitoring	are	extremely	helpful	in	this	regard	and	can	help	put	a
suspicious	failure	in	context.	If	you’re	only	working	with	external	symptoms	and	have	no	way	to	know	if	the	rest	of
your	infrastructure	is	okay,	you’re	flying	blind.	A	malfunction	could	be	a	one-off,	or	it	could	be	a	bellwether	of	terrible
things	to	come.	If	you	have	good	data,	you	have	a	shot	at	telling	the	difference.

References:

Header	image:	Frans	Ruiter,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/M04dMrtjm3U.
1	Andrew	Hopkins,	“Management	Walk-Arounds:	Lessons	from	the	Gulf	of	Mexico	Oil	Well	Blowout”,	February,
2011,	pg.	3.
2	Center	for	Chemical	Process	Safety	(CCPS),	Recognizing	Catastrophic	Incident	Warning	Signs	in	the	Process
Industries.	(Hoboken:	John	Wiley	&	Sons,	2011),	pg.	2.

Storm’s	A-comin’	was	originally	published	February	18,	2013.

Notes:

Storm’s	A-comin’	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 302

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
https://unsplash.com/photos/M04dMrtjm3U
https://regnet.anu.edu.au/sites/default/files/publications/attachments/2015-05/WorkingPaper_79_0.pdf

Troubleshooting	Trees

Good	documentation	will	tell	you	what	to	do	and	what	you	 shouldn’t	do.

Austin	Quade

One	thing	I	really	hate	is	making	the	same	mistake	twice.	In	my	tenure	as	a	CTO,	I	always	wanted	to	move	forward,
never	making	the	same	error	again.	I	tried	to	clear	the	way	for	our	team	to	make	new	mistakes.

Some	failures	happen	over	and	over	again.	As	you	gain	experience	with	a	machine,	you’ll	begin	to	see	all	the	different
ways	it	can	break	down.	As	discussed	in	“Same	Symptom,	Different	Causes,”	there	will	be	times	where	a	machine	will
appear	to	be	broken	like	a	previous	time,	but	actually	have	a	completely	different	underlying	cause	(and	associated
fix).	Figuring	this	out	can	be	costly,	so	let	me	introduce	a	way	of	preserving	and	communicating	your	hard-won
troubleshooting	knowledge:	a	troubleshooting	tree.

A	troubleshooting	tree	is	a	formal	description	of	the	troubleshooting	process	for	a	particular	problem.	The	tree	walks
you	through	a	rehearsed	fix-it	routine,	with	branches	along	the	way	where	you	stop,	gather	information,	and	make
choices	about	which	way	to	proceed.	Let’s	look	at	an	example:

Troubleshooting	Trees	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 303

https://artoftroubleshooting.com/2012/03/13/same-symptom-different-causes/

A	troubleshooting	tree	for	a	train	locomotive.
(source:	Baldwin-Lima-Hamilton	All-Service	Locomotive	Trouble	Shooting	Handbook,	February	1,	1952)

In	this	excerpt,	you	can	see	standard	operating	procedures,	symptoms	of	trouble,	and	the	associated	possibilities	for
remedying	them.	For	example,	if	the	locomotive’s	engine	won’t	start	(“Engine	Starting	→	If	Defective”),	the	tree	has
four	branches	leading	to	different	solutions:

1.	 Weak	battery	→	Check	→	Battery
2.	 Start	contactors	don’t	close	→	Check	→	Interlocks
3.	 Faulty	fuel	supply	→	Check	→	Overspeed	trip;	Clogged	strainer	or	filter;	Relief	valves	stuck;	Shutdown	valve.
4.	 Uneven	speed	engine	hunts	→	Check	→	Oil	level	in	governor.

Looking	over	this	locomotive	troubleshooting	tree,	you	can	see	some	symptoms	have	been	identified	as	the	result	of	a
single	cause	(e.g.,	“Start	contactors	don’t	close	→	Check	→	Interlocks”).	Others,	like	the	engine	not	starting,	can	have
multiple	causes,	which	need	to	be	serially	checked	until	the	problem	is	remedied.	Some	of	the	fixes	in	the	tree	are	very
quick	(e.g.,	flipping	a	switch),	while	others	refer	to	detailed	procedures	elsewhere	in	the	guide	that	might	take	several
pages	to	describe.

For	the	operator,	information	like	this	is	solid	gold.	The	time	savings	from	a	guide	like	this	can	be	immense:	even	just
one	branch	on	this	tree	might	have	taken	days	of	trial	and	error	to	figure	out!

Troubleshooting	Trees	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 304

The	seed	of	a	troubleshooting	tree	is	a	desire	to	help	someone	else	make	it	home	in	time	for	dinner.
(image:	eflon	/	CC	BY	2.0)

Planting	The	Tree

When	planting	a	new	tree	in	your	backyard,	there	are	certain	things	you	must	make	sure	are	present:	the	right	soil,
sunlight,	water,	and	climate.	Likewise,	there	are	things	you	should	make	available	to	the	reader	in	order	for	a
troubleshooting	tree	to	be	useful:

1.	 Necessary	operating	conditions,	useful	tools,	easily	missed	assumptions,	and	setup	requirements.
2.	 The	path	of	investigation,	with	all	the	likely	possibilities	for	each	decision	node	explained.

In	any	kind	of	documentation	you	write,	you	must	specify	the	conditions	under	which	your	methods	are	valid.	Should
a	test	be	performed	with	a	warm	or	cold	engine?	Is	a	certain	software	version	required?	Are	there	specific	tools	or
resources	that	must	be	on	hand	to	perform	the	operation	as	described?	S-p-e-l-l	it	out,	because	if	you	don’t	you	can	be
sure	that	someone,	somewhere	will	misunderstand	what’s	needed.	Also,	don’t	count	on	“normal”	conditions	to	exist.
After	all,	the	fact	that	the	reader	of	your	documentation	is	troubleshooting	is	a	strong	indication	that	the	conditions
present	are	not	normal!

Finally,	when	it	comes	to	any	kind	of	test,	remember	to	include	the	 full	range	of	possibilities	in	your	decision	nodes
(unless,	of	course,	it	violates	the	Laws	of	Physics	or	the	possibility	is	otherwise	covered	in	your	prerequisites).	If	you’ve
asked	the	troubleshooter	to	take	a	reading	from	a	meter	that	reads	from	0-100,	you	shouldn’t	just	list	decision	arrows
for	the	ranges	of	“81-90”	and	“91-100”.	What	if	the	meter	is	reading	“26”?

A	Seedling

After	you’ve	described	the	prerequisites,	you	can	start	to	create	the	troubleshooting	tree	itself.	Lead	the	reader	from
start	to	finish,	passing	through	the	points	needed	to	make	the	diagnosis	and	then	finally	to	remedial	actions:

Troubleshooting	Trees	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 305

http://www.flickr.com/photos/eflon/7981882492/
http://creativecommons.org/licenses/by/2.0/deed.en

A	basic	troubleshooting	tree	with	a	single	symptom,	cause,	and	remedy.
(image:	©	Jason	Maxham)

The	“boxes	and	lines”	layout	is	optional,	you	could	represent	the	same	information	using	words	in	a	list.	However,	the
visual	structure	of	connected	boxes	makes	it	easier	to	understand	and	follow	a	particular	troubleshooting	path.

Healthy	Growth

Troubleshooting	trees,	like	real	trees,	are	living	and	evolving	organisms.	Whenever	a	new	cause	is	discovered,	be	sure
to	add	a	branch	to	your	troubleshooting	tree.	Let’s	return	to	our	fictional	Whoozy-Whatzit	example	above.	After
deploying	the	troubleshooting	tree	to	technicians,	it’s	determined	that	the	proposed	remedy	(i.e.,	turning	the	Flum-
flumpeter	Switch	to	“ON”)	doesn’t	always	fix	the	problem.	In	fact,	a	new	cause	for	the	same	symptom	is	discovered.
When	that	happens,	you	need	to	grow	your	troubleshooting	tree:

Troubleshooting	Trees	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 306

When	a	new	cause	is	discovered,	expand	your	troubleshooting	tree	by	adding	a	branch.
(image:	©	Jason	Maxham)

Ideally,	you’d	have	a	recommended	course	of	action	for	every	possibility	(i.e.,	for	every	“yes”	branch	there	would	be	a
“no”	branch	and	vice-versa).	In	this	example,	you	can	see	that	the	reader	is	left	hanging	if	the	Flum-flumpeter	Switch	is
“ON”	and	the	Whoozy-Whatzit	is	in	fact	plugged	in:	there’s	a	missing	branch	for	“yes”	off	the	“Is	the	Whoozy-Whatzit
plugged	in?”	decision	node.	What	then?

Don’t	feel	like	you	have	to	cover	every	possibility	to	create	effective	documentation.	While	every	branch	you	could
take	might	be	theoretically	possible,	there’s	a	variety	of	reasons	why	you	might	choose	to	not	include	it:

The	probability	of	the	failure	is	low	(compared	to	other	failures)	or	has	never	been	observed.
A	desire	to	keep	the	documentation	brief:	maybe	you	only	get	a	page	or	two	for	troubleshooting	information	in	the
back	of	a	product	manual	and	so	you	can	only	cover	the	most	common	failures	types.
The	cost	of	researching	a	failure	condition	is	prohibitive	or	would	take	too	long.
The	information	is	geared	towards	a	certain	user	group	who	are	not	likely	to	encounter	the	failure	condition.	For
example,	maybe	you	have	a	product	that	is	installed	in	airplanes	and	boats	and	so	you	have	separate
troubleshooting	trees	for	mariners	and	aviators.

From	An	Acorn	To	A	Mighty	Oak

If	you	are	vigilant	about	updating	it,	over	time	a	troubleshooting	tree	will	represent	the	sum	of	all	the	knowledge	you

Troubleshooting	Trees	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 307

have	for	a	particular	set	of	symptoms	and	causes.	Back	to	the	point	made	at	the	beginning:	always	be	moving	forward
with	your	troubleshooting	knowledge.	If	you’ve	already	solved	the	problem	and	haven’t	documented	it,	you’re	blowing
it!

Creating	and	maintaining	documentation	is	a	necessary	step	for	growing	from	“small”	to	“large.”	Freeing	information
in	this	way	allows	an	entire	team	to	support	your	systems.	Around	Discovery	Mining,	we	used	to	joke	about	our	“bus
number.”	This	is	a	morbid	(and	hilarious!)	way	to	think	about	redundancy:	how	many	people	on	your	team	could	get
plowed	under	by	local	public	transit,	and	still	life	would	go	on?	If	the	answer	is	nobody,	you	have	a	“bus	number”	of
zero.	Of	course,	people	step	away	from	their	responsibilities	for	less	dramatic	reasons.	They	get	sick,	retire,	receive	a
promotion,	go	on	vacation,	or	leave	to	take	a	job	somewhere	else.	Speaking	of	teams,	documentation	also	allows	you
to	introduce	specialization	by	breaking	your	team	into	those	that	find	the	problems	and	those	that	fix	them.	Better	yet,
you	can	push	your	documentation	all	the	way	out	to	your	customers	and	have	them	solve	their	own	problems!

Even	if	you’re	troubleshooting	alone	with	no	team	to	support	you,	documentation	like	troubleshooting	trees	can	be
extremely	useful.	If	you	have	to	maintain	a	lot	of	systems,	memorizing	all	the	possible	symptoms	and	remedies	might
be	impossible.	Also,	documentation	is	a	calming	influence	in	a	crisis.	High-pressure	situations	favor	the	simplicity	of
following	something	like	a	troubleshooting	tree,	versus	having	to	figure	it	out,	again.

References:

Header	image:	“Black	branches	silhouetted	against	a	sunset	sky”.	Nareeta	Martin,	photographer.	Retrieved	from
Unsplash,	https://unsplash.com/photos/tFMdw0jCBPA.

Troubleshooting	Trees	was	originally	published	February	26,	2013.

Notes:

Troubleshooting	Trees	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 308

http://en.wikipedia.org/wiki/Bus_factor
https://unsplash.com/photos/tFMdw0jCBPA

Is	It	Really	Fixed?

Usually,	if	you	repair	or	replace	something	and	you	haven’t	quite	put	your	finger	on	the	cause,	it	will	fail	again.

Rich	Kral

When	I’m	asked	to	help	troubleshoot,	I	feel	a	sense	of	responsibility	towards	the	future.	After	I’m	done,	I	want	it	to	be
fixed.	Forever.	I	suppose	this	stems	from	a	desire	to	be	competent	and	the	pride	I	take	in	my	work.	Mostly	though,	it’s
that	I	don’t	ever	want	to	be	called	back	to	fix	something	again.	There’s	something	humiliating	about	triumphantly
telling	someone	“Well,	it	looks	like	my	job	here	is	done!,”	only	to	have	them	call	you	later…and	tell	you	that	the
problem	has	reappeared.	Going	back	that	second	time	(or	third,	or	fourth)	to	fix	something	again	is	humbling.	Trust	me,
because	I	know	from	firsthand	experience.

Even	if	there’s	no	one	around	to	witness	your	humiliation,	the	reality	is	that	a	botched	repair	can	come	back	to	haunt
you.	Especially	if	you’re	responsible	for	the	smooth	operation	of	a	system	(i.e.,	you	are	the	one	to	be	paged	in	the
middle	of	the	night	when	it	fails),	I	recommend	that	you	truly	open	your	eyes	and	do	everything	you	can	to	make	sure
the	problem	is	fixed	for	good.

Here’s	what	I’ve	observed	about	how	people	react	to	repeated	breakdowns:

Is	It	Really	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 309

Graph:	people	really	lose	it	after	the	third	failure.
(image:	©	Jason	Maxham)

I	have	personally	observed	the	arc	of	anger	in	the	graph	above:	the	first	time	something	fails,	most	people	will	consider
it	a	fluke.	The	second	time	will	elicit	concern.	However,	the	third	time	is	when	people	get	angry	and	decide	that
someone	needs	to	be	held	accountable:	expect	a	visit	from	the	CEO.

In	general,	the	more	a	failure	happens,	the	more	that	people	will	become	desensitized	to	its	effects.	It’s	exhausting	to
maintain	Peak	Anger	for	very	long.	Set	your	expectations	for	people’s	reactions	and	keep	your	eyes	on	the	prize:	the
long-term	fix.	You’ve	got	more	time	than	you	think	between	summiting	Mt.	Anger	and	the	point	where	you	should
“start	polishing	your	résumé.”

Of	course,	it’s	preferable	to	not	even	start	up	the	trail	to	Mt.	Anger,	so	the	following	are	strategies	to	prevent	the
embarrassing	prospect	(and	related	job	insecurity)	of	fixing	something	only	to	have	it	break	again.

Pull	The	Plug,	Accelerate	The	Inevitable

In	“Defaults	and	Reboots,”	I	discussed	the	risk	of	turning	a	machine	off:	sometimes	a	system	won’t	come	back	after	a
cold	restart.	While	I	mentioned	that	as	a	warning	before,	in	this	case	we’ll	use	it	to	our	advantage	to	learn	more	about	a
machine.	I	call	it	the	“Pull	The	Plug	Test”	and	it’s	as	simple	as	it	sounds:	after	you	make	your	repair,	turn	the	machine
off	and	then	turn	it	back	on	again.	In	some	cases,	I	would	literally	pull	the	plug	on	a	device	and	see	what	happened
when	I	plugged	it	back	in	again.	You’ll	have	to	use	your	judgement	on	how	far	to	take	this:	in	some	cases	a	hard	reset
like	disconnecting	a	power	cord	might	damage	a	machine.	A	gentler,	but	still	effective,	method	is	to	shut	down	a
machine	using	the	steps	recommended	by	the	manufacturer.	Either	way,	“pulling	the	plug”	can	be	very	illuminating:	if
a	machine	fails	to	work	after	being	reset,	it’s	better	that	you	discover	this	on	your	own	terms.

The	Pull	The	Plug	Test	asks	the	question:	“Will	this	system	continue	to	operate	correctly	after	some	kind	of	restart?”
Power	failures	aren’t	the	only	thing	responsible	for	restarts,	there	are	many	others	like	scheduled	maintenance,	refilling
supplies	(e.g.,	restocking	paper	in	a	copier),	human	error,	etc.	An	even	more	likely	cause	is	the	natural	rhythm	of	your
workplace:	things	are	routinely	turned	on	and	off	at	the	beginning	of	the	day,	when	going	to	lunch,	at	the	end	of	a
shift,	for	the	weekend,	etc.

In	those	cases	where	a	machine	is	on	the	edge	of	death,	turning	it	on	and	off	again	may	be	the	catalyst	that	finally

Is	It	Really	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 310

https://artoftroubleshooting.com/2011/12/21/defaults-and-reboots/

sends	it	to	the	graveyard.	These	end-of-life	failures	are	often	independent	of	the	fix	you	just	performed.	That	is,	it	was
going	to	die	anyway.	Remember,	the	goal	is	to	learn	whether	a	machine	you	have	finished	repairing	is	fully	functional
and	can	be	put	back	in	service.	If	it’s	just	a	single	power	failure	away	from	the	scrap	heap,	you’ll	want	to	know.	The
point	isn’t	to	cause	destruction,	but	to	get	out	in	front	of	a	future	problem.	Put	another	way,	would	you	rather	see	what
is	going	to	happen	after	a	cold	restart	in	a	controlled	manner,	or	at	3am	on	a	random	Tuesday?

Before	executing	the	Pull	The	Plug	Test,	think	a	move	ahead	and	consider	the	implications	of	turning	off	a	machine.
Complicated	systems	may	have	special	restart	sequences,	so	make	sure	this	expertise	is	available	before	you	get	trigger
happy	with	the	on/off	switch.	Very	high-risk	restarts	should	be	left	to	a	maintenance	window.

Spot	Configuration	Problems

For	fixes	that	involve	manipulating	a	machine’s	configuration,	the	Pull	the	Plug	Test	will	expose	whether	your	fix	will
be	overridden	by	a	restart.	Take	the	example	of	a	network	router	that	you	were	called	in	to	look	at	because	data	wasn’t
getting	from	point	A	to	B.	You	easily	spotted	the	problem,	made	the	necessary	configuration	changes,	verified	that	the
data	was	flowing	and	then	went	on	with	your	life.	Two	weeks	later	someone	bumps	the	power	cable,	the	device	is
reset,	and	the	problem	comes	back!	You	go	through	the	same	troubleshooting	cycle,	come	to	the	same	conclusion	as
to	the	cause,	and	make	the	same	change.	What	happened?	Well,	some	devices	will	allow	you	to	make	configuration
changes	that	are	only	valid	for	a	limited	period	of	time:	while	your	login	session	is	active,	while	the	device	is	powered
on,	or	until	some	automated	process	restores	a	default	set	of	rules.	In	other	words,	you	made	a	change	to	fix	the
problem,	but	you	didn’t	make	it	permanent.

If	the	system	in	question	cannot	be	made	to	automatically	use	a	particular	configuration	upon	restart,	then	you’ll	need
to	employ	low-tech	methods.	For	example,	you	can	use	tape	and	a	marker	to	show	where	dials	and	levers	need	to	be
set.	Or,	have	a	laminated	guide	dangling	next	to	the	controls	that	says	“TO	RESTORE	FUNCTIONALITY	AFTER	A
POWER	FAILURE,	FOLLOW	THESE	STEPS…”

Before	you	grab	the	checkered	flag	and	take	a	victory	lap,	make	sure	you’ve	really	fixed	it…
(image:	Jimmy_Joe	/	CC	BY	2.0)

Other	Paths	To	Permanence

A	few	more	ways	to	prevent	false	fix-it	victories:

Meet	the	standard:	making	sure	your	repairs	conform	to	a	known	standard	increase	their	chances	of	sticking.	Are
you	referring	to	a	repair	manual,	design	schematic	or	blueprints…or	are	you	just	winging	it?
Ask	the	machine:	many	machines	have	built-in	diagnostics	that’ll	tell	you	when	they’re	sick	and	when	they’re
healthy.	Does	the	machine’s	self-reported	state	confirm	the	effectiveness	of	your	repair?
Guilty	until	proven	innocent:	be	careful	with	the	reuse	of	parts,	especially	if	you	use	the	shotgun	method	of

Is	It	Really	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 311

https://artoftroubleshooting.com/2012/04/30/zen-and-the-art-of-routine-maintenance/
http://www.flickr.com/photos/joc67/690768086/
http://creativecommons.org/licenses/by/2.0/deed.en

replacement.	Bad	components	will	lie	in	wait,	ready	to	sabotage	a	future	repair.	When	I	worked	on	networks,
sometimes	we	would	replace	a	cable	that	we	suspected	was	faulty.	Later	on,	that	same	suspicious	cable	might	end
up	back	in	our	parts	bin	with	all	the	other	good	cables.	The	funny	thing	about	defective	parts	is	that	they	can	look
exactly	like	working	parts!	I’ll	state	the	obvious:	replacing	a	faulty	part	with	another	faulty	part	is	a	sure	way	to
have	a	problem	recur.	Burned	by	the	mixing	of	good	and	bad	cables,	I	started	cutting	suspicious	ones	in	half.	That
absolutely	prevented	their	reuse.	Later	on,	I	got	a	cable	tester	and	we	would	vet	any	cable,	used	or	new,	before
using	it	as	a	replacement.	Remember,	“new”	is	not	the	same	as	“functional.”	That’s	why	you’ll	see	many	manuals
use	the	phrase	“known	working	parts”	when	taking	about	replacements.
Testing	and	watching:	of	course	you’ll	confirm	all	your	fixes	by	doing	some	rudimentary	testing.	It’s	even	better	to
watch	the	person	who	reported	the	issue	use	a	machine	for	real	work	after	a	repair.	If	possible,	have	them	go
through	their	entire	workflow,	top	to	bottom.
Automated	detection	and	alerting: 	the	ultimate	solution.	Setting	up	a	system	to	be	continuously	monitored	and
then	to	be	notified	automatically	if	there	is	a	regression	is	the	best	way	to	be	sure	it’s	operating	normally	post-
repair.	The	digital	world	really	shines	in	this	regard,	but	data	collection	interfaces	can	bring	this	level	of	certainty	to
analog	processes	as	well.

Eat	Your	Dinner,	Not	Your	Words

Perhaps	the	most	important	thing	you	can	do	is	sprinkle	in	a	dash	of	humility	when	discussing	the	results	of	your
troubleshooting.	Even	if	I’m	sure	I’ve	nailed	a	fix,	I	prefer	to	let	the	results	speak	for	themselves.	If	you	still	want	that
satisfying	recognition	of	victory,	be	patient:	like	revenge,	it’s	best	served	cold.	Wait	a	few	weeks,	then	ask	how	things
are	going	with	that	repair	you	did.	When	they	say	everything	is	fine	(and	have	paid	the	bill	for	the	work),	then	go
ahead	and	take	your	much-deserved	victory	lap.

References:

Header	image:	Palmer,	A.	T.,	photographer.	“Bog-downs”	and	bottlenecks	in	defense	plant	operation	are	out	for
the	duration.	Maintenance	crews	are	eternally	at	it	to	keep	everything	in	good	working	order.	United	States,	Ohio,
Cuyahoga	County,	Cleveland.	1941.	Dec.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017691079/.

Is	It	Really	Fixed?	was	originally	published	February	28,	2013.

Notes:

Is	It	Really	Fixed?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 312

https://www.loc.gov/item/2017691079/

Down	To	The	Roots

There	are	a	thousand	hacking	at	the	branches	of	evil	to	one	who	is	striking	at	the	root.

Henry	David	Thoreau

Machines	don’t	exist	in	nature.	You’ve	never	turned	on	the	Discovery	Channel	to	see	a	program	called	“Stalking	the
Wild	Internal	Combustion	Engine	in	North	Africa.”	Therefore,	the	root	cause	of	all	system	failures	originates	with
decisions	made	by	a	human	being	(or	a	group	of	people).	Let	that	sink	in.	While	I	sympathize	with	the	feelings	of	many
an	anti-social	engineer,	who	would	like	nothing	more	than	to	build	beautiful	machines	while	being	left	alone,	avoiding
the	human	context	will	seriously	impair	your	ability	to	be	an	effective	troubleshooter.

Aftermath

The	crisis	is	over.	You	fixed	it,	the	client	is	happy,	the	production	line	is	rolling	again,	the	money	spigot	is	flowing.
You’re	done,	right?	Wrong.	There’s	another	step	you	should	take	that	will	take	you	from	good	to	great:	taking	what
you’ve	learned	from	the	incident	and	feeding	it	back	into	your	organization.	If	you	want	things	to	improve	and	prevent
failures	from	recurring,	you	need	to	make	learning	from	your	malfunctions	a	part	of	your	process.	Don’t	let	it	happen
by	accident,	this	“last	mile”	needs	to	be	a	priority	and	given	adequate	resources.

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 313

Get	down	here	and	find	out	what’s	really	going	on…
(image:	Anna	Levinzon	/	CC	BY	2.0)

Let	me	introduce	the	field	of	Root	Cause	Analysis	(RCA).	Much	ink	has	been	spilled	on	this	topic;	you	could	fill	an
entire	library	with	books	about	RCA.	Beyond	that,	there	are	many	management	systems	that	integrate	some	aspects	of
RCA	as	part	of	a	larger	regime	(GE’s	famous	Six	Sigma,	for	example).	We	won’t	get	into	all	that,	because	this	chapter	is
simply	about	making	you	aware	of	the	need	for	something	like	RCA,	rather	than	advocating	for	a	particular	system.	It’s
up	to	you	to	choose	and	experiment	with	a	particular	one.	Don’t	worry,	an	MBA	isn’t	required	nor	will	you	have	to
spend	months	in	boring	seminars	to	benefit	from	RCA.	Later	on,	I’ll	show	you	a	very	simple	and	powerful	version	of

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 314

http://www.flickr.com/photos/anyalogic/3249616410/
http://creativecommons.org/licenses/by/2.0/deed.en
http://en.wikipedia.org/wiki/Root_cause_analysis
http://www.amazon.com/s?url=search-alias%253Daps&field-keywords=root+cause+analysis
http://en.wikipedia.org/wiki/Six_Sigma

RCA	that	may	be	all	you	ever	need.

The	Basics

First,	let’s	go	over	the	basics	that	should	be	included	in	an	effective	root	cause	analysis	process.	Learning	from	a	failure
requires	these	essential	steps:

1.	 Precisely	defining	the	problem	and	explaining	why	it	needs	to	be	solved. 	People	need	to	understand	why	they’re
being	asked	to	take	time	away	from	their	responsibilities	to	participate.	Defining	the	problem	is	its	own	challenge:
I’ve	seen	this	part	of	the	process	take	considerable	time.	Resolving	these	disagreements	is	worth	it,	because	they
highlight	the	differing	perspectives	people	bring	to	the	process	(e.g.,	customer	service	vs.	engineering	vs.	legal).	A
good	way	to	define	a	problem	is	in	terms	of	its	external	impact:	this	deadline	was	missed,	this	client	was
inconvenienced,	this	person	was	injured,	etc.	Focusing	on	the	impact	of	a	problem	adds	emotional	weight	and
provides	the	obvious	reason	for	pursuing	improvements.	You’ll	need	this	energy	because	the	recommendations
stemming	from	a	RCA	investigation	can	have	a	large	upfront	cost.	In	other	words,	it’s	going	to	be	more	work	for
somebody.

2.	 Gathering	information:	data,	perspectives,	assembling	a	timeline,	quantifying	the	impact. 	What	happened?	When?
Where?	How	much?	These	details	are	crucial	to	identifying	causes	and	will	make	sure	you’re	fixing	the	right	thing.
I’ve	had	investigations	end	prematurely	because	of	missing	information:	the	only	recommendation	you	can	make	in
these	type	of	cases	is	to	start	collecting	data	so	you’ll	be	prepared	next	time.	Finally,	quantifying	the	effects	of	an
incident	can	be	a	powerful	force	to	drive	change:	people	not	directly	involved	can	be	amazingly	ignorant	of	the
effects	of	a	failure.	You’ll	need	to	show	them	“how	much”	to	make	them	care.

3.	 Tracing	the	problem	back	to	the	root(s).	Not	superficial	proximate	causes.	Not	“the	car	ran	out	of	gas.”	If	you’re
doing	it	right,	the	problem	will	always	lead	back	to…you	guessed	it:	people,	processes,	or	policies.	There	can	be
no	other	answer.	We	already	know	that	all	machines	will	eventually	break	down;	when	that	happens,	they’re	just
doing	what’s	expected.	Someone	designed	that	machine,	someone	chose	to	deploy	it	for	a	given	purpose,	someone
was	responsible	(or	not)	for	maintaining	it	and	on	and	on.	The	root	cause	of	a	failure	is	never	within	the	machine
itself.

4.	 Generating	possible	solutions	to	prevent	the	failure	from	happening	in	the	future.	I	like	to	cast	a	wide	net	in	this
phase:	the	more	options	the	better.

5.	 Identifying	your	resources,	then	choosing	a	path.	The	options	you’ve	generated	will	have	varying	costs	and
benefits,	so	you’ll	need	to	decide	amongst	them.	Or,	advocate	for	additional	resources	if	you	feel	the	problem	is
important	enough.

6.	 Follow-up:	implement,	measure,	review,	respond,	evangelize.	This	is	the	phase	where	many	RCA	projects	stumble
and	die.	Not	only	do	you	have	to	actually	implement	the	recommendations	coming	out	of	the	process	(that	is,	do
some	work),	you	should	also	agree	on	a	way	to	measure	the	effectiveness	of	your	efforts.	The	data	you	collect	for
this	purpose	needs	to	be	evaluated	and	responded	to:	be	ready	to	change	course	if	reality	doesn’t	match	your
theory.	Finally,	spreading	the	good	news	is	very	important	for	ongoing	participation	by	your	co-workers.	If	you	can
show	everyone	that	your	RCA	process	is	making	their	lives	better,	you	won’t	have	to	bribe	them	with	cookies	to
attend	your	meetings	(although	that	helps	too).

Enlist	Allies

Having	the	backing	of	your	organization	is	important	before	starting	an	RCA	program.	I	guess	you	could	go	rogue	and
dish	out	RCA-based	vigilante	justice	on	your	own:	a	geeky	Batman	armed	with	only	a	spreadsheet	and	the	question
“Why?”	The	problem	is	that	your	ability	to	implement	what	you	learn	from	any	RCA	process	will	require	resources.
Therefore,	be	sure	to	enlist	the	help	of	someone	with	decision-making	power.	Your	co-workers	need	to	believe	that
This	Is	Important.	RCA	represents	change,	and	people	fear	change.	They	will	have	to	attend	a	meeting	and	you	know
that	everyone	loves	attending	meetings	(although	I	personally	think	the	5	Whys	process	is	fun).	Finally,	the
recommendations	will	likely	make	more	work	for	someone	(at	least	in	the	short	term).	“Why	are	we	doing	this?,”	will
inevitably	be	asked	by	someone.	It’ll	either	be	done	in	the	spirit	of	“My	time	is	precious	and	so	why	should	I	give	it	to
you?”	or	“You’re	cutting	into	my	FaceBook	time	and	so	why	should	I	give	it	to	you?”	Whether	you	work	with	people
who	take	pride	in	their	work	or	unapologetic	slackers,	you	should	have	an	answer	that	will	appeal	to	the	best	in	them
(for	the	rest,	you’ll	have	to	convince	them	the	old-fashioned	way:	with	carrots	and	sticks).

Where	To	Start

If	you’ve	got	a	reluctant	manager,	offer	to	start	with	just	a	single	issue	and	see	how	it	goes.	There’s	no	need	to	commit

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 315

to	a	full-blown	RCA	program	before	seeing	the	value	with	your	own	eyes.	When	deciding	what	issue	to	tackle	first,
consider	starting	small	as	well.	As	stated	previously,	the	best	topics	are	those	that	resulted	in	an	impact	that’s	easy	to
point	to:	something	that	harmed	your	customers,	employees,	the	bottom	line,	or	your	reputation.	If	you’re	just	starting
to	think	critically	about	your	operations,	it’s	better	to	focus	on	bad	things	that	have	actually	happened,	versus
hypothetical	risks	because:

1.	 If	it	happened	once,	it’s	likely	to	happen	again.	A	problem	that	has	already	occurred	has	nominated	itself	from
amongst	all	the	other	probabilities.	Go	with	the	flow	and	take	this	gift.

2.	 Nothing	focuses	the	mind	and	rallies	the	troops	like	a	threat	to	your	organization.	It	also	bestows	upon	you	 the
moral	high	ground	to	make	change.

Assemble	The	Players

There’s	always	the	question	of	how	many	people	to	involve	in	your	RCA	meetings.	I’d	aim	for	a	“medium”	amount	of
participation	because	there	are	two	counteracting	forces	at	work:

Why	you	want	to	include	as	many	people	as	possible:	you’ll	need	to	have	enough	perspectives	and	information	in
the	room	so	the	problem	can	be	understood	and	learning	can	happen.	If	you’re	missing	too	many	key	people,
you’ll	be	left	with	questions	that	can’t	be	answered.	You’ll	have	frustrating	moments	where	you’ll	ask	a	question
and	the	room	will	be	silent:	“So–and–so	knows,	but	he’s	not	here…”	If	it’s	really	important,	you’ll	have	to	pause
the	meeting	or	suspend	it	until	the	right	people	are	present.
Why	you	want	to	include	as	few	people	as	possible:	among	the	“resources”	you’ll	have	to	manage	during	any	RCA
meeting	are	your	participants’	interest	and	caring.	If	you	have	too	many	people	in	the	room,	you’ll	dilute	this
precious	human	commodity.	There’s	a	natural	limit	to	the	size	of	an	effective	meeting.	As	the	number	of	people
grows,	the	logistics	of	managing	the	attention	span	of	a	large	group	takes	its	toll.	A	smaller,	energized	team	that	is
empowered	to	make	improvements	is	preferable	to	a	stadium-sized	crowd.

So,	you	see	the	right	answer	is	somewhere	in	between.	A	big	enough	group	to	know,	and	a	small	enough	group	to
care.

Define	The	Problem

It	may	sound	trivial,	but	sometimes	defining	the	problem	will	be	the	biggest	challenge	for	a	RCA	meeting.

Scope:	problems	defined	too	narrowly	and	not	in	the	context	of	larger	meaning	to	your	organization	will	lack	the
psychological	punch	to	get	action.	“Drive	shaft	with	serial	number	#2319310	failed	at	3:45pm	in	Chilling	Unit	#5”
may	be	accurate,	but	won’t	inspire	action.	Back	to	the	point	above	about	defining	the	problem	in	terms	of	its	impact	to
your	organization.

Problems	defined	too	broadly	may	prevent	the	team	from	taking	any	action	at	all.	Things	like	“our	clients	are	unhappy”
or	“our	industry	is	collapsing”	are	too	amorphous.	Those	kind	of	large-scale	problems	can	be	fascinating	to	debate,	but
your	group	will	likely	lack	the	resources	to	pursue	a	solution.	Also,	people	will	tune	out	if	they	think	the	problem	is	so
large	that	they	will	be	unable	to	make	a	difference.

Perspective:	if	you	bring	together	people	from	different	teams,	you	may	encounter	a	subtle	form	of	finger	pointing.
People	can	be	parochial	in	viewing	a	problem	only	from	their	perspective.	This	isn’t	bad,	it’s	just	not	always	useful.
Framing	the	problem	in	the	spirit	of	blame	(e.g.,	“the	maintenance	department	screwed	up”)	may	contain	kernels	of
truth,	but	isn’t	a	perspective	that	will	lead	to	the	best	insights.

The	proper	perspective	for	framing	a	problem	is	external	(i.e,	the	customer’s).	Everyone	will	share	a	basic	level	of
empathy	for	this	view	because	their	job	depends	on	having	customers,	and	so	it	places	all	participants	on	the	same
side.	Soliciting	input	from	a	broad	cross-section	of	people	involved	in	an	incident	ensures	exposure	to	all	the	relevant
viewpoints.	I’ve	done	5	Whys	by	myself,	but	it’s	much	more	powerful	in	a	group	setting	because	of	this	cross-
pollination	of	perspectives.

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 316

https://artoftroubleshooting.com/2013/03/26/moral-authority/

Little	things	can	make	a	big	difference…
(image:	Delwin	Steven	Campbell	/	CC	BY	2.0)

5	Whys:	Tracing	Consequences	Back	To	Roots

There’s	a	famous	proverb	about	a	nail:

For	Want	of	a	Nail

For	want	of	a	nail	the	shoe	was	lost.
For	want	of	a	shoe	the	horse	was	lost.
For	want	of	a	horse	the	rider	was	lost.
For	want	of	a	rider	the	message	was	lost.
For	want	of	a	message	the	battle	was	lost.
For	want	of	a	battle	the	kingdom	was	lost.
And	all	for	the	want	of	a	horseshoe	nail.

In	real	life,	the	causal	chain	isn’t	usually	this	poetic,	but	I	think	you	get	the	point:	seemingly	small	things	can	have	large
consequences.	“For	Want	of	a	Nail”	is	a	great	segue	to	the	5	Whys	method	of	root	cause	analysis,	which	not	only
shows	the	impact	of	small	causes,	but	also	uncovers	hidden	ones.

The	5	Whys	process	was	developed	by	Sakichi	Toyoda	and	helped	Toyota	Motor	Corporation	become	the	largest
automotive	company	in	the	world.	Taiichi	Ohno,	the	architect	of	Toyota’s	Just-in-Time	production	system,	describes	5
Whys	like	this:

When	confronted	with	a	problem,	have	you	ever	stopped	and	asked	why	five	times?	It	is	difficult	to	do	even
though	it	sounds	easy.	For	example,	suppose	a	machine	stopped	functioning:

1.	Why	did	the	machine	stop?
There	was	an	overload	and	the	fuse	blew.
2.	Why	was	there	an	overload?
The	bearing	was	not	sufficiently	lubricated.
3.	Why	was	it	not	lubricated	sufficiently?
The	lubrication	pump	was	not	pumping	sufficiently.

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 317

http://www.flickr.com/photos/thecampbell/526802071/
http://creativecommons.org/licenses/by/2.0/deed.en

4.	Why	was	it	not	pumping	sufficiently?
The	shaft	of	the	pump	was	worn	and	rattling.
5.	Why	was	the	shaft	worn	out?
There	was	no	strainer	attached	and	metal	scrap	got	in.

Repeating	why	five	times,	like	this,	can	help	uncover	the	root	problem	and	correct	it.	If	this	procedure	were	not
carried	through,	one	might	simply	replace	the	fuse	or	the	pump	shaft.	In	that	case,	the	problem	would	recur	within
a	few	months.

To	tell	the	truth,	the	Toyota	production	system	has	been	built	on	the	practice	and	evolution	of	this	scientific
approach.	By	asking	why	five	times	and	answering	it	each	time,	we	can	get	to	the	real	cause	of	the	problem,
which	is	often	hidden	behind	more	obvious	symptoms.

Taiichi	Ohno,	Toyota	Production	System:	Beyond	Large-Scale	Production 	1

The	5	Whys	process	invites	you	to	look	below	the	surface	of	“proximate”	causes,	because	acting	at	this	level	rarely
leads	to	lasting	improvements.	It	may	be	satisfying	to	ask	“Why	won’t	the	car	start?,”	and	answer,	“Because	the	battery
is	dead.”	However,	stopping	at	the	proximate	cause	will	lead	you	to	believe	that	inanimate	objects	have	minds	of	their
own.	“It’s	the	battery’s	fault!”	would	be	the	inevitable	conclusion	of	this	kind	of	thinking,	but	of	course	yelling	at
batteries	like	a	madman	won’t	change	anything.	You	might	chuckle	at	that	imagery,	but	any	time	a	machine	is	blamed
for	a	failure	it’s	the	same	thing.

If	people	are	the	source	of	all	system	breakdowns,	it’s	reassuring	to	know	that	they	are	also	the	solution.	The	entire
theme	of	this	book,	that	all	machine	problems	are	human	problems,	struck	me	like	lightening	during	a	5	Whys
meeting.

The	Washington	Monument	Story

Let’s	look	at	another	example	of	hidden	causes	uncovered	by	the	5	Whys	method,	in	this	oft-told	story	about	the
Washington	Monument*:

Problem:	the	Washington	Monument	was	crumbling.

Why	was	it	crumbling?	Because	harsh	chemicals	were	being	used	on	the	monument.
Why	were	the	harsh	chemicals	being	used?	To	clean	off	all	the	pigeon	poop.
Why	were	there	so	many	pigeons?	The	pigeons	were	attracted	to	the	spiders	(pigeons	eat	spiders).
Why	were	there	so	many	spiders?	The	spiders	were	attracted	to	the	gnats	(spiders	eat	gnats).
Why	were	there	so	many	gnats?	The	gnats	were	attracted	to	the	artificial	lights	turned	on	at	dusk.

Solution:	Turn	on	the	lights	at	a	later	time.	That	would	attract	fewer	gnats,	which	would	mean	fewer	spiders,
which	would	mean	fewer	pigeons,	ultimately	lessening	the	need	to	use	those	harsh	chemicals.	Problem	solved!

You	can	see	here	that	we	asked	“Why?”	five	times	in	a	row	and	came	up	with	an	astounding	result!	Who	would	have
thought	that	turning	the	lights	on	at	dusk	would	lead	to	a	crumbling	monument?	Also,	seeing	the	full	causal	chain	that
led	to	the	problem	gives	you	many	possibilities	for	a	solution.	Let’s	say	that	turning	on	the	lights	later	was	not	an	option
for	whatever	reason	(maybe	you	need	them	on	for	safety	concerns).	You	could,	separately	or	in	combination,	consider
reducing	the	amount	of	gnats,	spiders,	or	pigeons.	This	is	in	addition	to	fixing	the	problem	at	the	proximate	cause	level
by	finding	a	pigeon	poop	cleaner	that	isn’t	corrosive.	It’s	good	to	have	options!

*Note:	This	story	of	the	Washington	Monument	convincingly	shows	the	power	of	5	Whys	in	discovering	the	root	cause	of	a	problem.	However,
I	have	been	unable	to	confirm	that	it’s	a	true	story.	Based	on	my	research,	the	story	is	widely	cited	all	over	the	Internet.	It	truly	is	the	king	of
examples	for	Root	Cause	Analysis	and	you’ll	find	it	in	many	a	PowerPoint	presentation.	The	problem	is,	I	couldn’t	find	a	single	reference	to	an
original	source	verifying	that	the	story	is	real.	I’ve	posted	a	question	on	Quora	asking	about	the	story’s	origin ,	but	until	someone	comes	forth
with	evidence	of	its	veracity,	I’d	treat	it	as	a	very	good	myth	of	Management	Consulting.

Update	(April	14,	2015):	Joel	Gross	has	done	some	intriguing	research	that	sheds	light	on	the	origin	of	this	mystery.	In	 “5	Whys	Folklore:	The
Truth	Behind	a	Monumental	Mystery,”	he	makes	the	case	that	the	Washington	Monument	story	has	its	origins	in	an	unpublished	National	Park

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 318

http://www.google.com/search?q=%2522washington+monument%2522+%2522pigeons%2522+%2522spiders%2522+%2522lights%2522
http://www.quora.com/Monuments/Is-this-story-about-the-Washington-Monument-crumbling-true
http://thekaizone.com/2014/08/5-whys-folklore-the-truth-behind-a-monumental-mystery/

Service	report	by	Dr.	Don	Messersmith	(“Lincoln	Memorial	Lighting	and	Midge	Study “).	While	sharing	some	elements	with	the	real	account,	I’d
say	the	popular	parable	is	more	legend	than	fact.	However,	several	intriguing	questions	remain	to	be	answered.	First	off,	how	did	we	get	from
that	unpublished	NPS	report	to	the	urban	legend	we	have	today?	More	importantly,	should	we	stop	using	the	Washington	Monument	story	to
introduce	people	to	5	Whys?	As	a	teaching	tool,	I’ve	found	that	this	drama	of	causality	has	that	“aha!”	factor.	People	instantly	get	the	message
that	root	causes	are	often	buried	and	require	probing	to	uncover,	as	well	as	the	power	of	unintended	consequences.

The	Washington	Monument	story	is	a	beautiful	illustration	of	the	problem	of	hidden	causes.	There,	there,	I’ll
get	you	a	tissue	to	dry	your	eyes.

(image:	Phil	Roeder	/	CC	BY	2.0)

Trace	The	Causes

To	conduct	a	5	Whys	meeting,	it’s	best	to	use	a	large	whiteboard	to	note	the	progress	of	your	investigation.	Start	by
writing	down	the	problem	on	the	left-hand	side	of	the	board.	From	there,	you’ll	proceed	through	the	5	levels	of	whys,

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 319

http://www.flickr.com/photos/tabor-roeder/5541323781/
http://creativecommons.org/licenses/by/2.0/deed.en

branching	off	as	appropriate	for	places	where	there	were	multiple	causes.	When	that	happens,	be	sure	to	get	all	of	them
before	you	move	on	to	the	next	level	of	“Why?”	Don’t	get	fixated	on	the	number	5	either,	there’s	nothing	magical
about	that	5th	Why.	In	practice,	I’ve	found	that	root	causes	can	appear	as	soon	as	the	2nd	or	3rd	Why.	Don’t	go	beyond
that	if	it’s	not	useful.	You’ll	know	when	you’ve	reached	the	end	of	a	line	of	inquiry	because	the	next	“Why?”	would
result	in	a	question	that’s	silly	or	obvious.	We	once	played	“100	Whys”	and	ended	up	with	“Why	do	people	have	to
eat?”

Let’s	look	at	an	example	of	a	5	Whys	inquiry	in	a	table	format.	The	problem	is	on	the	left	and	the	5	levels	of	“Whys?”
take	you	to	possible	solutions	on	the	right:

Problem 1st	Why 2nd	Why 3rd	Why 4th	Why 5th	Why Solution

Our	client,
XYZ	Inc.,
is	angry
and	is
considering
canceling
their
contract
with	us.

The
delivery
deadline
for	our
client	XYZ
Inc.	was
missed	by
7	days.

Water
damaged
the
shipment
and	it	had
to	be
replaced.

A	water
reservoir
filled	up
and	spilled
onto	the
factory
floor.

Bob	wasn’t
at	the
controls	to
flush	the
reservoir	as
it	became
full.

Bob	has
other	work
duties	he’s
required	to
perform.

Increase
staffing	in
general	or
deploy	extra
staff	when
the
automated
flushing
mechanism
breaks.

Our	client,
XYZ	Inc.,
is	angry
and	is
considering
canceling
their
contract
with	us.

The
delivery
deadline
for	our
client	XYZ
Inc.	was
missed	by
7	days.

Water
damaged
the
shipment
and	it	had
to	be
replaced.

A	water
reservoir
filled	up
and	spilled
onto	the
factory
floor.

Variable
fill	rate
means
employees
aren’t	aware
of	how	much
water	the
reservoir	is
currently
holding.

No
alerting
system	in
place	to
let	staff
know	when
overfilling
is
imminent.

Install
reservoir
alerting
system.

Our	client,
XYZ	Inc.,
is	angry
and	is
considering
canceling
their
contract
with	us.

The
delivery
deadline
for	our
client	XYZ
Inc.	was
missed	by
7	days.

Water
damaged
the
shipment
and	it	had
to	be
replaced.

A	water
reservoir
filled	up
and	spilled
onto	the
factory
floor.

The
reservoir
needed	to	be
manually
drained.

Automated
flushing
mechanism
has	been
broken	for
the	past	2
weeks.

Automated
flushing
mechanism
should	be
repaired
immediately
when	it
breaks.

Our	client,
XYZ	Inc.,
is	angry
and	is
considering
canceling
their
contract
with	us.

The
delivery
deadline
for	our
client	XYZ
Inc.	was
missed	by
7	days.

Water
damaged
the
shipment
and	it	had
to	be
replaced.

There’s	no
physical
separator
between
the
shipping
staging
area	and
the	water
containment
system.

Designers
didn’t
anticipate
the
installation
of	the
reservoir
near	the
staging
area.

Operations
department
didn’t
communicate
all
probable
uses	of
the	space
to	the
architects.

Install	a
barrier	to
contain
flooding.
Also,
operations
needs	to
formally
document	its
planned	use
for	a	space
when
starting	a
new
construction
project.

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 320

Our	client,
XYZ	Inc.,
is	angry
and	is
considering
canceling
their
contract
with	us.

XYZ	Inc.
wasn’t
contacted
about	the
delay
until	5
days	after
the
deadline
was	missed
(they
could	have
worked
around	the
delay	if
they	had
been
informed).

The
customer
service
department
has	no
visibility
into
shipping
delays.

→ → →

Report
shipping
delays	to
the	customer
service
department
so	clients
can	be
contacted.

You	can	see	that	we’ve	started	with	a	negative	external	effect:	a	client	is	angry	with	us.	From	there,	we’ve	identified
two	1st-level	Whys:	a	shipping	delay	caused	by	flooding	and	a	client	communication	problem.	Already	we’ve	learned
something,	either	getting	the	shipment	out	on	time	or	letting	the	client	know	about	the	delay	could	have	saved	our
bacon!	This	is	why	it’s	so	important	to	begin	the	5	Whys	process	with	the	overarching	Bad	Thing:	if	you	would	have
started	with	the	flooding,	you	would	have	missed	this	other	aspect	of	the	problem.	Also,	look	at	all	the	options	we	have
generated	to	prevent	the	problem	in	the	future.	We	can	attack	the	problem	through:	staffing,	an	alerting	system,	faster-
responding	maintenance,	installing	a	flood	barrier,	or	better	client	communication.	If	losing	XYZ	Inc.’s	business	is
something	that	absolutely	cannot	be	allowed	to	happen,	you	might	choose	to	make	all	of	these	improvements!	Most	of
the	time,	however,	you	won’t	be	able	to	pursue	all	your	good	ideas:	you’ll	need	to	do	a	cost/benefit	analysis	to	select
among	them.	I’ve	been	in	5	Whys	meetings	that	have	resulted	in	a	long	list	of	great	possibilities	for	improvements,	but
resources	only	allowed	us	to	pursue	the	best	one.

It	All	Comes	Back	To	Us

The	end	result	of	5	Whys	will	typically	be	the	 lack	of	something:	discipline	(i.e,	following	proper	procedures),	training,
knowledge,	resources,	setting	of	expectations,	maintenance,	etc.	If	you	find	yourself	still	describing	the	goings-on	of
inanimate	objects,	you	haven’t	gone	deep	enough.	Keep	asking	“Why?”	How	the	problem	unfolded	via	cause	and
effect	is	interesting,	but	describing	the	situation	like	a	news	reporter	is	only	the	beginning	of	the	process.	Your	systems
were	designed	by	people,	purchased	by	people,	installed	by	people,	maintained	by	people	and	their	output	sold	to
other	people	(clients	or	customers).	A	long	series	of	choices	made	by	people	is	the	result	of	any	incident.	Recognizing
the	role	of	human	choice	in	system	failures	is	different	from	placing	blame:	the	people	who	made	the	choices	leading
to	an	incident	were	probably	acting	on	the	best	information	available	to	them	at	the	time.	Simply	recognize	that	new
information	has	come	to	light	and	needs	to	be	integrated	into	your	processes.

The	importance	of	management	in	drawing	the	right	conclusions	from	any	kind	of	root	cause	analysis	cannot	be
understated.	If	you	accept	that	the	origin	of	all	incidents	was	somebody’s	choice,	you	quickly	realize	that	the	“top
chooser”	(the	CEO,	owner,	Board	of	Directors,	etc.)	is	ultimately	responsible	but,	as	stated	before,	not	necessarily	to
blame.

A	Touchy	Subject

Since	you’re	bound	to	name	people	as	causes	when	you	do	5	Whys,	you’ll	need	to	conduct	the	process	with	tact.	In
the	example	above,	we	can	see	that	Bob	could	have	saved	the	day	if	he	was	at	the	controls	to	prevent	the	reservoir
from	overfilling.	People	love	a	scapegoat,	so	there	will	be	the	temptation	to	ignore	the	rest	of	the	evidence	and
conclude	that	Bob	was	the	root	cause.	However,	don’t	be	fooled:	someone	hired	Bob,	put	him	in	a	position	of
responsibility,	overloaded	him	with	work,	and	designed	a	system	that	requires	constant	human	supervision	to	work
properly.	That	changes	your	perspective	on	the	true	cause	of	this	incident,	doesn’t	it?

If	Bob	was	truly	negligent	with	respect	to	his	job	duties,	then	perhaps	he	should	be	fired.	However,	if	you	believe	that
replacing	Bob	will	stop	this	type	of	accident	ever	happening	again,	think	twice.	Bob’s	contribution	to	this	incident

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 321

http://www.youtube.com/watch?v=gbIv7W7rhx4

didn’t	happen	in	vacuum:	his	employer	created	a	situation	that	ensured	maximum	damage	when	there	was	a	human
error.	People	are	guaranteed	to	make	mistakes,	so	any	system	where	you	are	just	one	lapse	away	from	a	catastrophe	is
poorly	designed.	A	combination	of	multiple	backstops,	human	and	automated,	will	ensure	that	something	like	this
doesn’t	happen	again.	If	you	look	at	the	outcome	of	this	5	Whys	investigation,	you’ll	see	that	both	types	of	fixes
emerged	as	ideas	for	future	improvements.

There	will	be	cases	where	the	right	answer	to	an	incident	will	be	a	change	of	personnel.	When	that	happens,	do	a
double–check	and	make	sure	you	have	fostered	the	conditions	for	your	employees	to	be	successful.

Empathy	For	Those	Affected

An	advocate	for	the	client	should	always	be	present	at	your	5	Whys	meeting.	This	“client	advocate”	could	be	a	project
manager,	the	salesperson	who	owns	the	account	of	an	affected	client,	the	person	who	collects	the	bills,	or	someone
from	a	different	department	who	is	the	“customer”	(in	the	case	of	internal	projects).	The	advocate	will	bring	the	client’s
point	of	view	to	the	process	and,	through	their	presence,	the	client	will	have	“a	seat	at	the	table.”	The	advocate	will	see
first-hand	that	you	care	about	improving	and	rectifying	what	went	wrong.	Salespeople	especially	will	feel	better	after
witnessing	your	efforts	to	improve	a	bad	situation.	In	the	opposite	direction,	I’ve	seen	salespeople	develop	empathy	for
the	challenges	faced	by	the	engineers	who	are	tasked	to	fix	a	problem.	This	can	counteract	the	classic	tension	between
those	who	sell	promises	and	those	who	deliver	on	them.	The	salesperson	who	is	included	in	the	RCA	process	will	be
more	vigilant	about	not	over-promising	to	clients.	Also,	what	great	fodder	for	their	next	sales	pitch,	when	they	can
explain	what	went	wrong	and	give	a	detailed	rundown	on	all	the	improvements	you’ve	made!

Some	Cheese	With	Your	Whine?

At	the	end	of	a	5	Whys	meeting,	it’s	useful	to	ask	for	feedback	on	the	solutions	that	were	generated	during	the	session.
The	participants	of	your	meeting	can	point	out	flaws	and	prevent	you	from	pursuing	fixes	that	embody	the	old	saying,
“The	cure	is	worse	than	the	disease.”	Also,	people	get	real	smart	when	you	propose	creating	more	work	for	them:	and
when	I	say	“smart,”	I	mean	whiney.	It’s	an	art	to	tell	the	difference	between	principled	objections	and	the	“don’t	make
me	change	anything”	type	of	grousing.	I	like	to	call	bluffs	and	ask	“What	would	you	have	to	know	or	see	to	be
persuaded	this	is	the	right	fix?”	and	then	design	an	experiment	or	collect	data	to	satisfy	their	concerns.	If	you’re	right,
there’s	no	way	they	can	object:	they	told	you	exactly	what	they	needed	to	be	convinced.

Make	It	A	Habit

Root	cause	analysis	should	be	done	on	a	regular	basis.	Depending	on	your	needs,	it	should	be	on	the	calendar	for	the
same	time	every	day/week/month/quarter.	Don’t	have	any	problems	in	your	organization	that	are	worthy	of	learning
more	about?	Contact	me,	I’d	like	to	invest.	For	the	rest,	strap	in	for	a	lifetime	of	RCA.	Having	RCA	occur	at	regular
intervals	means	that	sometimes	you’ll	be	focusing	on	minor	problems.	That’s	fine,	have	the	meeting	anyway.	As	a
manager,	I	was	stunned	at	the	things	I	learned	about	my	company	from	digging	into	even	the	“smallest”	of	problems—
and	I	had	been	there	from	day	one!	Remember	too	about	the	“tip	of	the	iceberg”:	little	problems	sometimes	develop
into	larger	problems.	Ruthlessly	examining	your	small	incidents	may	prevent	you	from	ever	having	to	experience	a
large	disaster.

Too	Much	Of	A	Good	Thing

If	your	organization	is	constantly	in	“crisis	mode,”	you	might	have	enough	material	for	a	thousand	5	Whys	meetings.
You	can	schedule	extra	sessions,	but	be	aware	of	the	law	of	diminishing	returns.	Taking	employees	out	of	their	daily
routine	is	costly,	and	the	recommendations	from	each	investigation,	while	typically	having	long	term	benefits,	will
involve	w-o-r-k.	RCA	is	a	great	way	to	transform	your	workplace,	but	even	the	most	nimble	and	well-managed
organization	will	have	an	upper	limit	to	how	much	change	they	can	absorb	at	any	given	time.

Criticisms	Of	5	Whys

No	process	is	perfect.	Let’s	look	at	some	problems	you	may	encounter	when	using	5	Whys	and	how	I	think	you	can
overcome	them.	Stewart	Anderson,	in	his	article	“Root	Cause	Analysis:	Addressing	Some	Limitations	of	the	5	Whys,”
lays	out	the	major	pitfalls:

While	many	companies	have	successfully	used	the	5	Whys,	the	method	has	some	inherent	limitations.	First,	using

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 322

https://artoftroubleshooting.com/2013/02/18/storms-a-comin/

5	Whys	doesn’t	always	lead	to	root	cause	identification	when	the	cause	is	unknown.	That	is,	if	the	cause	is
unknown	to	the	person	doing	the	problem	solving,	using	5	Whys	may	not	lead	to	any	meaningful	answers.
Second,	an	assumption	underlying	5	Whys	is	that	each	presenting	symptom	has	only	one	sufficient	cause.	This	is
not	always	the	case	and	a	5	Whys	analysis	may	not	reveal	jointly	sufficient	causes	that	explain	a	symptom.	Third,
the	success	of	5	Whys	is	to	some	degree	contingent	upon	the	skill	with	which	the	method	is	applied;	if	even	one
Why	has	a	bad	or	meaningless	answer,	the	whole	procedure	can	be	thrown	off.	Finally,	the	method	isn’t
necessarily	repeatable;	three	different	people	applying	5	Whys	to	the	same	problem	may	come	up	with	three
totally	different	answers.

Other	drawbacks	to	5	Whys	have	been	cited,	including	the	method’s	inability	to	distinguish	between	causal
factors	and	root	causes,	and	the	lack	of	rigor	where	users	aren’t	required	to	test	for	sufficiency	the	root	causes
generated	by	the	method.

Stewart	Anderson,	“Root	Cause	Analysis:	Addressing	Some	Limitations	of	the	5	Whys” 	2

It’s	true	that	5	Whys	process	won’t,	by	itself,	reveal	an	unknown	cause	to	you.	Anderson’s	criticisms	are	fair,	but	for	me
5	Whys	is	just	a	framework	for	learning	more	about	an	incident.	If	you	have	a	diverse	set	of	people	participating	in
your	5	Whys	process,	you’ll	at	least	capture	all	the	knowledge	available	in	your	organization.	That’s	frequently	more
than	enough	to	solve	most	problems.	Also,	I	don’t	know	of	any	process	that	guarantees	revelations	of	causes	unknown.
Anderson	is	right	that	results	are	contingent	upon	“the	skill	with	which	the	method	is	applied,”	but	this	objection	would
seem	to	apply	to	all	systems	designed	to	acquire	knowledge.	Even	our	vaunted	Scientific	Method	benefits	from	a	skilled
and	disciplined	practitioner	who	can	adhere	to	the	principles	and	draw	the	right	conclusions	from	an	experiment.

For	those	unknowns	that	can’t	be	discovered	by	talking	it	through,	a	perfectly	acceptable	outcome	of	a	5	Whys	meeting
is	the	realization	that	you	need	more	information	to	complete	your	analysis.	You	may	resolve	to	start	collecting	data,
set	up	a	monitoring	system,	or	conduct	an	experiment	to	test	a	theory	about	the	cause.	I’ve	suspended	5	Whys
meetings	to	allow	for	additional	time	to	gather	information	we	identified	as	relevant.	This	was	especially	true	for
situations	where	we’d	have	an	incident	and	no	one	could	answer	the	question	“What	is	normal?”	Reconvening	later,
after	a	chance	to	acquire	the	missing	information,	we	were	better	able	to	tackle	the	problem.

If	you	get	stuck,	don’t	be	afraid	to	put	a	big	question	mark	as	a	placeholder	in	your	5	Whys	tree	and	move	on	with	your
meeting.	Sometimes	the	answer	will	reveal	itself	later.	Even	if	it	doesn’t,	in	those	situations	with	multiple	root	causes,
you	can	still	fill	in	the	other	branches.	In	the	example	above,	even	if	the	cause	of	the	flooding	was	unknown	and
needed	further	investigation,	we	still	had	the	opportunity	to	discover	the	client	communication	problem.

You	can	read	the	rest	of	Stewart’s	article	if	you’re	interested	in	learning	more	about	improving	the	5	Whys	process.	I
hope	you	eventually	reach	a	level	of	sophistication	where	those	suggestions	are	useful,	or	perhaps	you’ll	branch	out
into	other	systems.	In	the	meantime,	5	Whys	remains	a	very	accessible	entry	point	to	starting	your	RCA	journey.

Beyond	Solving	Problems

The	benefits	of	RCA	go	beyond	learning	about	any	one	incident	and	spill	over	into	improved	morale.	Having	a	good
RCA	program	sends	its	own	message:

You	take	improvement	seriously.
You	care	enough	about	your	product	or	service	that	major	mistakes	and	incidents	will	be	thoroughly	reviewed	(i.e.,
problems	will	be	brought	out	in	the	open,	not	swept	under	the	rug).
You	value	your	employees:	you	seek	and	act	upon	their	feedback	while	making	them	integral	to	the	improvement
process.

References:

Header	image:	Uprooted	tree	at	Elizabeth	A.	Morton	National	Wildlife	Refuge	(NY) .	November	1,	2012.	U.S.	Fish
and	Wildlife	Service	Northeast	Region.	Retrieved	from	Flickr,
https://www.flickr.com/photos/usfwsnortheast/8152103662/.
1	Taiichi	Ohno,	Toyota	Production	System:	Beyond	Large-Scale	Production	(Portland:	Productivity	Press,	1988),	pg.
17.

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 323

https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
https://www.flickr.com/photos/usfwsnortheast/8152103662/

2	Stewart	Anderson,	“Root	Cause	Analysis:	Addressing	Some	Limitations	of	the	5	Whys,”	Quality	Digest,	December
17,	2009.

Down	To	The	Roots	was	originally	published	March	14,	2013.

Notes:

Down	To	The	Roots	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 324

http://www.qualitydigest.com/inside/fda-compliance-news/root-cause-analysis-addressing-some-limitations-5-whys.html

Moral	Authority

I	used	to	have	people	say	“If	it	was	yours,	would	you	fix	it?”	I’d	say,	“No,	I	wouldn’t.	But,	if	my	wife	was	driving	it
I	would.”

Dan	McCormick

Once	you	get	familiar	with	a	system,	you	start	to	get	a	good	sense	of	what	could	push	it	over	the	edge.	As	a
troubleshooter,	there	will	be	times	that	you	labor	in	vain	to	alert	your	colleagues	about	the	dangers	of	a	meltdown.	It’s
human	nature	to	ignore	warnings	for	things	which	we	have	little	or	no	experience.	Many	times	your	fate	will	be	like	a
modern	day	Laocoön,	who	tried	to	warn	the	Trojans	about	the	 giant	wooden	horse/metaphor	they	had	just	wheeled
into	their	stronghold.	He	famously	said:	“Beware	of	Greeks	bearing	gifts.”	Actually,	I	hope	you	fare	a	little	better	than
good	ol’	Laocoön,	who	was	blinded	and	then	strangled	by	two	giant	sea	serpents	(courtesy	of	Athena)	as	repayment	for
his	whistle-blowing	efforts.	Unfortunately,	he	was	deprived	of	a	righteous	“I	told	you	so!”	moment	at	the	end	of	that
whole	saga.

Unlike	Laocoön,	maybe	you	didn’t	see	disaster	coming	and	were	blindsided	like	everyone	else.	Either	way,	in	the	wake
of	a	crisis,	people	will	be	ready	to	listen	to	your	plans	for	improvement.	Because	they	will	be	the	most	receptive	to
change	after	a	catastrophe,	you	must	take	advantage	of	this	limited	window.	Act	while	the	pain	of	a	crisis	is	fresh	in
people’s	memories.	This	quote	sums	it	up	quite	well:

Moral	Authority	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 325

http://en.wikipedia.org/wiki/Laoco%25C3%25B6n
http://en.wikipedia.org/wiki/Trojan_Horse

You	never	want	a	serious	crisis	to	go	to	waste.	And	what	I	mean	by	that	is	an	opportunity	to	do	things	you	think
you	could	not	do	before.

Rahm	Emanuel,	former	White	House	Chief	of	Staff

In	a	political	context,	I’m	suspicious	of	the	sentiment	contained	in	a	statement	such	as	this.	When	the	government	does
things	it	“thought	it	couldn’t	do	before”—watch	out!	You	might’ve	heard	the	old	saying,	“No	man’s	life,	liberty,	or
property	are	safe	while	the	Legislature	is	in	session.”

That	aside,	I	must	admit	that	Mr.	Emanuel	would	make	a	mighty	fine	troubleshooter.	He’s	right,	you	shouldn’t	let	a
crisis	go	to	waste.	Afterwards	(or	during,	if	it	persists	long	enough),	you’ll	have	the	opportunity	to	make	changes	that
would	have	been	difficult	without	the	undeniable	reality	of	a	recent	catastrophe.	In	the	aftermath	of	a	crisis,	here	are
some	areas	where	you	should	boldly	forge	ahead:

Budgets:	risks	you	identify	have	an	“average”	expected	cost.	When	an	accident	finally	does	happen,	that	cost	is
fully	realized.	Whereas	before,	the	probabilities	and	expenses	were	once	hypothetical,	afterwards	you	will	have	the
actual	numbers	to	point	at.	The	resulting	expenses	are	a	great	starting	point	to	advocate	for	new	spending	to
prevent	an	accident	from	reoccurring:	new	machines,	increased	staffing,	more	frequent	maintenance,	infrastructure
improvements,	etc.
Policies:	new	gear	isn’t	the	only	way	to	prevent	an	accident	from	reoccurring.	Instead,	what	you	might	need	are
changes	to	how	your	organization	works.	Training	and	procedures	should	be	reviewed	and	updated	to	deal	with
the	new	reality.	Because	people	like	routine	and	are	resistant	to	change,	or	because	of	organizational	politics,	this
may	be	your	only	opportunity	to	make	meaningful	policy	changes.
Information	flow/transparency:	sometimes	a	lack	of	information	is	the	origin	of	a	disaster.	As	a	consequence	of
territorial	or	political	disputes,	departments	and	processes	can	become	closed	off	from	each	other.	In	times	of
peace,	vital	information	might	be	painful	to	assemble	because	of	this	organizational	friction.	However,	in	the	wake
of	a	calamity,	demands	for	transparency	will	be	taken	more	seriously.

The	Psychology	Of	Disasters

Why	don’t	we	do	a	better	job	anticipating	disasters?	It	probably	has	to	do	with:

Reality	is	complicated:	poorly	understood	systems,	interacting	with	other	poorly	understood	systems,	can	produce
even	more	things	you	don’t	understand.	Also,	there’s	the	power	of	unintended	consequences:	your	actions	can	set
things	in	motion	that	may	only	be	understood	with	the	power	of	hindsight.
“Availability	heuristic”:	psychology	studies	have	shown	that	your	mind	places	additional	importance	on	things	that
have	happened	recently.	This	effect	is	called	the	“availability	heuristic”	and	the	mental	bias	also	applies	if	you’re
able	to	think	of	an	example	of	something.	Disasters,	being	rare,	won’t	likely	trip	this	“availability”	trigger–you’ll
have	to	champion	their	importance	without	this	psychological	boost.
“Bystander	effect”:	group	dynamics	come	into	play	in	disaster	preparedness	psychology.	If	no	one	else	is
concerned,	you’ll	be	more	likely	to	brush	off	the	risk	as	well.
Personal	or	institutional	solipsism:	this	is	an	inability	to	project	beyond	your	own	experience	(or	your
organization’s).	It’s	the	sentiment	that,	if	it	hasn’t	happened	to	you	(or	us),	it	cannot	happen	at	all.

Data	collection	(prediction)	and	routine	maintenance	(prevention)	can	be	a	bulwark	against	catastrophes.	But,	let’s	be
realistic,	eliminating	all	future	disasters	is	like	trying	to	stop	the	rain.	This	is	not	an	argument	for	complacency,	but
rather	a	reminder	to	prevent	accidents	when	you	can	and	to	learn	the	most	from	the	rest	that	will	inevitably	slip
through	your	best	defenses.

Moral	Authority	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 326

https://www.youtube.com/watch?v=_mzcbXi1Tkk
http://www.barrypopik.com/index.php/new_york_city/entry/no_mans_life_liberty_or_property_are_safe_while_the_legislature_is_in_sessi/
http://en.wikipedia.org/wiki/Availability_heuristic
http://en.wikipedia.org/wiki/Bystander_effect
https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/
https://artoftroubleshooting.com/2012/04/30/zen-and-the-art-of-routine-maintenance/

When	you	have	the	moral	high	ground,	the	good	people	will	listen.
(image:	Ludwig	Von	Langenmantel	/	Wikimedia	Commons)

“With	Great	Power,	Comes	Great	Responsibility”

Invoke	the	power	of	Moral	Authority	sparingly	and	with	the	restraint	of	a	wise,	old	sage	like	Mr.	Miyagi.	The	goal	is	to
pave	the	way	for	a	better	future,	not	to	wield	power	for	its	own	sake.	The	phenomenon	of	unintended	consequences,
which	underlies	many	disasters,	can	also	befall	plans	to	prevent	disasters.	Using	the	emotion	of	a	disaster	to	take
resources	and	attention	away	from	other	worthy	causes	has	its	own	cost,	and	can	lead	to	problems	just	the	same.

References:

Header	image:	Harris	&	Ewing,	photographer.	Podium/desk	on	porch	of	U.S.	Capitol,	Washington,	D.C.	[Between
1921	and	1923]	[Photograph]	Retrieved	from	the	Library	of	Congress,	https://www.loc.gov/item/2016885695/.

Moral	Authority	was	originally	published	March	27,	2013.

Notes:

Moral	Authority	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 327

http://commons.wikimedia.org/wiki/File:Savonarola-preaching-against-prodigality-ludwig-von-langenmantel-1879.jpg
http://en.wikipedia.org/wiki/Keisuke_Miyagi
https://www.loc.gov/item/2016885695/

Making	A	List,	Checking	It	Off

It’s	such	a	hard	lesson	to	learn,	but	you	need	to	go	all	the	way	through	the	basics.

Jamie	Karrick

In	the	relatively	short	span	between	the	start	of	the	Industrial	Revolution	and	now,	the	amount	of	knowledge
accumulated	in	just	a	single	industry	would	take	many	lifetimes	to	fully	understand.	Imagine	trying	to	know	everything
there	is	about	cars	or	computers	or	petroleum	extraction.	These	industries	haven’t	been	around	that	long,	but	the
people	associated	with	them	have	been	very	busy!

On	top	of	that,	many	machines	combine	innovations	from	a	variety	of	sources.	Think	about	a	modern	airliner,	which	is
an	amalgamation	of	the	latest-and-greatest	from	a	large	number	of	other	industries:	high-efficiency	turbine	engines,
lightweight	composite	materials,	advanced	computer	systems	for	communication	and	navigation,	etc.	Within	a	jet	is	an
endless	list	of	technological	advances,	all	cobbled	together	to	create	one	awesome	super-system.	“Systems	of	systems”
like	this	have	long	surpassed	the	ability	of	any	one	human	to	fully	understand	them.	Yet,	by	finding	ways	to	manage
this	complexity,	we	are	still	able	to	use	technology	to	better	our	lives.

Without	further	ado,	let	me	introduce	the	humble	checklist.	Within	its	boxes	contains	a	method	for	handling
complexity	that	is	so	effective	(and	simple)	that	large	portions	of	our	advanced	industrial	civilization	would	be
impossible	without	it.	At	the	same	time,	I	also	want	to	familiarize	you	with	a	great	book	on	the	subject	that	shows	just
how	much	we	can	gain	from	using	checklists	(and	why).	Creating	a	checklist	is	the	ultimate	way	to	communicate	the

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 328

results	of	what	you’ve	learned	from	a	troubleshooting	exercise.	As	opposed	to	other	passively	consumed	forms	of	post-
repair	communication	like	“incident	reports”	and	“service	bulletins,”	the	checklist	puts	the	best	way	of	doing
something	directly	into	the	hands	of	those	doing	the	work.	As	you’ll	see,	it’s	not	enough	to	know:	if	facts	aren’t
translated	into	doing	on	a	consistent	basis,	your	learning	is	meaningless.	Because	the	checklist	distills	information	into
an	action-oriented	form,	I	shed	a	lone	tear	when	contemplating	the	beauty	of	its	bridge	between	what	is	known	and
what	should	be	done	about	that	knowing.

This	guy	knows	his	way	around	a	checklist.
(image:	Bart	Fields	/	CC	BY	2.0)

So	Many	Things	Needed	To	Go	Right…And	Luckily	They	Did

Atul	Gawande’s	The	Checklist	Manifesto	is	a	call	to	arms	for	people	who	want	to	improve	the	world.	The	book	begins
with	a	compelling	story	showing	the	awesome	power	of	advanced	medical	technology.	Gawande	recounts	the	details
of	a	3-year-old	who	fell	into	an	ice-covered	fishpond	in	the	Austrian	Alps.	The	little	girl	sat	at	the	bottom	of	a	small
lake	for	30	minutes,	in	icy	cold	waters,	before	her	parents	located	her	and	pulled	her	out.	The	fight	to	save	her	life
began	and	what	unfolded	can	only	be	described	as	a	miracle	of	modern	medicine:	a	well-choreographed	dance
between	dozens	of	personnel	and	the	advanced	technology	they	used.	These	professionals	managed	to	give	this	young
girl	a	second	chance	at	life,	but	so	much	had	to	go	right	for	that	to	happen:

To	save	this	one	child,	scores	of	people	had	to	carry	out	thousands	of	steps	correctly:	placing	the	heart-pump
tubing	into	her	without	letting	in	air	bubbles;	maintaining	the	sterility	of	her	line,	her	open	chest,	the	exposed	fluid
in	her	brain;	keeping	a	temperamental	battery	of	machines	up	and	running.	The	degree	of	difficulty	in	any	one	of
these	steps	is	substantial.	Then	you	must	add	the	difficulties	of	orchestrating	them	in	the	right	sequence,	with
nothing	dropped…

Atul	Gawande,	The	Checklist	Manifesto 	1

Now,	this	little	girl	is	living	a	normal	life.	However,

For	every	drowned	and	pulseless	child	rescued,	there	are	scores	more	who	don’t	make	it—and	not	just	because

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 329

file:///Users/jasonmaxham/Library/CloudStorage/Dropbox/JGM/Art%20of%20Troubleshooting/book/v3/img/1040a21ad8d28edc21bda36cd8fc7369d09dc06d44dbcf4dd8e3a08827f4b862
http://www.flickr.com/photos/bartfields/312541706/
http://creativecommons.org/licenses/by/2.0/deed.en

their	bodies	are	too	far	gone.	Machines	break	down;	a	team	can’t	get	moving	fast	enough;	someone	fails	to	wash
his	hands	and	an	infection	takes	hold.

Atul	Gawande,	The	Checklist	Manifesto 	1

“Too	Much	Plane”	For	One	Person?

As	a	technical	field	or	industry	matures,	it	gets	exponentially	more	complicated.	Knowledge	accumulates	indefinitely
as	innovations	occur	(i.e,	there	are	always	new	things	to	keep	up	with).	Also,	the	number	of	applications	for	an
industry’s	technology	tends	to	grow	over	time.	For	example,	microchips	were	used	in	just	a	few	applications	in	the
1950s,	but	today	they	are	everywhere.	The	first	internal	combustion	engines	were	deployed	in	cars,	but	today	you	can
find	them	in	a	wide	variety	of	uses,	from	lawnmowers	to	portable	electric	generators.	As	a	technology	finds	new
applications,	the	intersections	with	each	new	industry	creates	even	more	complexities.	The	principles	of	the	internal-
combustion	engine	may	be	a	known	quantity,	but	its	use	in	a	car,	an	airplane,	and	a	lawnmower	are	all	different	and
have	special	considerations.

The	tragedy	from	which	the	modern	use	of	the	checklist	was	born.	This	Boeing	Model	299,	piloted	by	Major
Ployer	P.	Hill,	crashed	during	a	demonstration	flight	at	Wright	Field	on	October	30,	1935.

(image:	National	Museum	of	the	US	Air	Force)

For	aviation,	this	same	march	of	technological	progress	resulted	in	increasingly	sophisticated	designs.	Enter	stage	right,
the	Boeing	Model	299:	a	prototype	bomber	that	was	all	set	to	become	the	go-to	plane	for	the	US	Army	Air	Corps	in
1935.	The	result	of	a	design	competition,	the	299	trounced	the	offering	by	rival	Martin	&	Douglas	in	all	of	the
important	categories:	range,	payload	capacity,	and	speed.	However,	during	a	demonstration	in	front	of	the	Army’s	top
brass,	there	was	a	terrible	accident.	Major	Ployer	P.	Hill,	the	Air	Corps’	chief	of	flight	testing,	was	in	command	during
the	demonstration	flight	of	the	Model	299.	After	takeoff,	he	climbed	the	plane	to	300	feet,	where	it	stalled,	turned
towards	the	ground,	and	exploded	in	a	giant	fireball	on	impact.	Tragically,	two	of	the	five	crew	members	aboard	died
in	the	accident,	including	Major	Hill.

A	demonstration	flight	with	fatalities	that	ends	in	a	fiery	explosion	in	front	of	the	press:	that	isn’t	just	a	tragedy,	it’s	also
bad	marketing.	To	add	to	the	woes,	the	Model	299	was	in	the	midst	of	a	design	competition	and	the	destruction	of	the
prototype	meant	Boeing	was	disqualified.	The	Army	ended	up	choosing	Martin	&	Douglas’	design	and	only	a	few
299’s	were	initially	ordered.	However,	what	happened	next	changed	aviation	forever:

Still,	the	Air	Corps	faced	arguments	that	the	aircraft	was	too	big	to	handle.	The	Air	Corps,	however,	properly

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 330

http://en.wikipedia.org/wiki/Invention_of_the_integrated_circuit
http://www.nationalmuseum.af.mil/factsheets/factsheet_media.asp?fsID=2478
http://en.wikipedia.org/wiki/Boeing_B-17_Flying_Fortress

recognized	that	the	limiting	factor	here	was	human	memory,	not	the	aircraft’s	size	or	complexity.	To	avoid
another	accident,	Air	Corps	personnel	developed	checklists	the	crew	would	follow	for	takeoff,	flight,	before
landing,	and	after	landing.	The	idea	was	so	simple,	and	so	effective,	that	the	checklist	was	to	become	the	future
norm	for	aircraft	operations.	The	basic	concept	had	already	been	around	for	decades,	and	was	in	scattered	use	in
aviation	worldwide,	but	it	took	the	Model	299	crash	to	institutionalize	its	use.

“The	Checklist”,	Air	Force	Magazine	2

This	point	is	important	and	bears	dwelling	on	for	a	moment:	if	someone	had	to	die	at	the	controls	of	the	299,	it	was
actually	a	blessing	that	it	happened	to	be	Major	Hill.	Because	his	death	was	difficult	to	ignore,	it	wouldn’t	be	in	vain;	a
rookie	crashing	the	plane	would	have	been	easy	to	dismiss	as	a	lack	of	experience.	You	can	just	imagine	the
conclusion	of	that	hypothetical	incident	report:	“…we	recommend	more	training:	only	experienced	pilots	should	be
flying	complex	airplanes	like	the	299.”	Thank	goodness	those	test	pilots	dealt	so	honestly	with	the	fact	that	Major	Hill
was	an	expert	and	didn’t	simply	recommend	more	preparation.

Gawande	notes	that	the	adoption	of	the	checklist	came	when	the	aviation	industry’s	designs	had	reached	a	tipping
point	in	terms	of	complexity.	In	addition	to	that,	I	feel	there	are	some	special	aspects	of	aviation	that	made	this	leap
inevitable.	Flying	airplanes	is	an	endeavor	where	human	failures	are	made	brutally	plain	because	their	effects	are	so
deadly.	A	person	sits	conspicuously	at	the	controls,	making	the	link	between	erroneous	actions	and	bad	outcomes
readily	apparent:	either	a	safe	landing	and	a	“see	you	tomorrow,”	or	a	massive	fireball	with	coverage	on	the	10	o’clock
news.

All	human	action	is	worthy	of	our	scrutiny	for	betterment	but,	in	other	fields,	the	link	between	human	error	and	bad
outcomes	may	not	be	as	readily	apparent	as	it	is	in	aviation.	Deaths	from	airplane	crashes	aren’t	any	more	tragic	than
those	stemming	from	other	kinds	of	poor	judgement,	yet	I	think	we	may	be	willing	to	give	a	“free	pass”	to	mistakes	in
other	fields.	Evidence	for	this	is	the	average	number	of	annual	aviation-related	deaths:	they	have	never	exceeded	more
than	5,000	in	any	given	year	worldwide	(and	for	most	years	it’s	around	1,000).	Contrast	that	to	what	Gawande	found
about	the	impact	of	human	error	with	regards	to	surgery:

Avoidable	surgical	complications	thus	account	for	a	large	proportion	of	preventable	medical	injuries	and	deaths
globally.	Adverse	events	have	been	estimated	to	affect	3–16%	of	all	hospitalized	patients,	and	more	than	half	of
such	events	are	known	to	be	preventable.	Despite	dramatic	improvements	in	surgical	safety	knowledge,	at	least
half	of	the	events	occur	during	surgical	care.	Assuming	a	3%	perioperative	adverse	event	rate	and	a	0.5%
mortality	rate	globally,	almost	7	million	surgical	patients	would	suffer	significant	complications	each	year,	1
million	of	whom	would	die	during	or	immediately	after	surgery.

“WHO	Guidelines	for	Safe	Surgery”	3

Those	are	unbelievable	numbers.	You	can	see	from	these	statistics	that	the	opportunity	to	improve	our	lives	by
reducing	the	impact	of	human	error	is	substantial.	That	sets	up	the	narrative	arc	of	The	Checklist	Manifesto:	taking	the
checklist’s	successes	in	other	fields	(aviation,	construction,	etc.)	and	applying	them	to	medicine.	Shortly,	we’ll	do
likewise	and	apply	the	checklist	to	troubleshooting.

Coming	To	Terms	With	Human	Fallibility

It’s	clear	that	Major	Hill’s	death	forced	his	fellow	test	pilots	to	make	a	tough	realization.	When	the	most	respected,
talented,	experienced,	and	trained	person	dies	attempting	a	task,	where	does	that	leave	the	rest	of	us?	The	implications
for	the	average	person,	trying	to	do	the	same	job,	aren’t	good.	Cue	the	scary	music.

When	we’re	talking	about	machines	like	airplanes	or	respirators,	a	single	detail	can	be	the	difference	between	life	and
death.	Or,	less	dramatically	for	other	machines,	between	working	and	not	working.	That	reminds	me,	I	didn’t	tell	you
the	cause	of	the	crash	of	Major	Hill’s	Boeing	299.	I	wish	I	could	say	it	was	some	exotic	failure,	but	the	reason	the	plane
crashed	was	easily	preventable.	On	most	airplanes,	there	is	a	system	to	lock	the	control	surfaces	(rudder,	ailerons,	and
elevator)	when	not	in	use.	This	mechanism	is	called	a	“gust	lock”	and	it	prevents	these	all-important	parts	from	being
damaged	by	the	wind	when	sitting	on	the	ground.	Of	course,	the	ability	to	freely	move	the	rudder,	ailerons,	and

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 331

https://www.airforcemag.com/article/0813checklist/
https://en.wikipedia.org/wiki/Aviation_accidents_and_incidents#Statistics

elevator	is	vital	to	controlling	the	airplane	when	in	flight,	so	the	locks	must	be	disengaged	before	takeoff.
Unfortunately,	this	critical	step	was	missed:

From	the	evidence	submitted	the	Board	reached	the	conclusion	that	the	elevator	was	locked	in	the	first	hole	of	the
quadrant	on	the	“up	elevator”	side	when	the	airplane	took	off,	for	had	the	elevator	been	in	either	of	the	“down
elevator”	holes	on	the	quadrant	or	the	extreme	“up	elevator”	hole,	it	would	have	been	impossible	for	the	airplane
to	be	taken	off	in	the	former	case,	and	in	the	latter	case	the	pilot	could	not	have	gotten	into	the	seat	without	first
releasing	the	controls.	With	the	elevator	in	this	position	they	are	inclined	at	an	angle	of	12.5	degrees.

During	the	take-off	run	the	airplane	could	not	assume	an	angle	of	attack	greater	than	the	landing	angle	of	the
airplane	(7.5	degrees)	plus	the	angle	of	incidence	of	the	monoplane	wing	to	the	fuselage	(3	degrees)	or	a	total
angle	of	10.5	degrees.	This	would	not	be	particularly	noticeable	to	the	pilot	during	the	ground	run.

However,	as	soon	as	the	airplane	left	the	ground,	which	several	witnesses	testified	was	in	a	tail	low	attitude,	the
elevators,	with	increasing	power,	varying	as	the	square	of	the	air	speed	(approximately	74	miles	per	hour	at	take-
off),	tended	constantly	to	increase	the	angle	of	attack,	until	the	stall	was	reached.	The	trim	tab	on	the	elevator	also
tended	to	aggravate	this	extreme	tail	heavy	position,	since	with	locked	elevators,	and	the	pilot	pushing	forward	on
the	control	column,	the	trim	tabs	were	up,	and	themselves	acted	as	small	elevators	on	the	fixed	elevator	proper.

National	Museum	of	the	US	Air	Force,	Model	299	Crash	Fact	Sheet 	4

We’ll	never	know	for	sure	why	the	gust	locks	were	left	engaged	on	that	fateful	morning	of	October	30,	1935.	Was
Major	Hill	nervous	about	the	demonstration	flight?	Was	he	distracted	at	that	key	moment	in	his	routine	when	he
normally	disengaged	them?	Or,	perhaps	the	thought	just	never	crossed	his	mind	(or	his	co-pilot’s)	that	day,	a
forgetfulness	of	which	we’ve	all	been	guilty.

The	rub	is,	for	those	critical	steps	(like	disengaging	gust	locks),	the	airplane	has	to	be	set	up	the	right	way,	all	the	time.
That	one	time	you	forget	will	be	your	last.	Luckily,	most	missed	steps	don’t	result	in	death,	but	that	doesn’t	lessen	the
number	of	things	that	need	to	be	gotten	right	to	make	our	technological	civilization	chug	along	every	day.

Managing	Complexity

We	may	have	evolved	with	the	natural	world,	but	it	still	has	mysteries	that	our	reason	hasn’t	penetrated.	Even	our	best
mathematical	models,	running	on	massive	supercomputers,	can	only	predict	the	weather	6	days	out.	On	top	of	that,
we’ve	been	busy	creating	things	that	rival	our	natural	environment	in	complexity.	However,	the	specific	ability	to	fly
airplanes,	manage	a	team	building	a	skyscraper,	or	perform	surgery	simply	weren’t	a	selective	factor	in	our
evolutionary	history.	There	was	no	equivalent	to	“perfectly	execute	these	30	steps	in	the	same	sequence	every	time”	as
our	species	was	grappling	with	surviving	in	the	wilderness	over	the	millennia.	On	the	savannah,	if	747s	and	computers
had	been	ubiquitous	as	Woolly	Mammoths	and	Saber-toothed	Tigers,	there’d	probably	be	no	need	for	the
checklist!	Forgetting	to	disengage	the	gust	locks	on	an	airplane	puts	you	in	the	same	amount	of	danger	as	getting	too
close	to	a	steep	ledge	or	staring	a	lion	in	the	face,	but	it	won’t	automatically	invoke	a	primal	fear-based	response	in	the
same	way.	Dangers	from	machines	must	be	learned.

Of	course,	we	have	learned	how	to	master	complex	tasks	on	a	consistent	basis:	to	fly	airplanes,	to	build	skyscrapers,
and	to	perform	life-saving	surgeries.	In	order	to	do	these	amazing	things,	we	bolster	our	innate	abilities	with	research,
training,	procedures,	teamwork,	and	experience.	However,	as	the	Boeing	299	crash	showed,	along	with	thousands	of
other	disasters	before	and	after,	this	is	not	enough.	As	valuable	as	preparation	is,	we	still	need	a	safeguard	against	our
vulnerabilities	at	the	moment	of	execution.	Being	distracted,	forgetful,	tired,	or	stressed	can	negate	years	of	training
when	it	results	in	a	critical	step	being	missed.

Connecting	The	Checklist	To	Troubleshooting

There	are	two	juicy	opportunities	to	incorporate	checklists	into	your	fix-it	routines:

1.	 As	a	means	to	guide	the	problem	discovery	or	repair	phases.	That	is,	using	a	checklist	 while	troubleshooting.
2.	 By	transforming	what	you	 learned	while	making	a	repair	into	recommendations	for	the	best	way	of	doing

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 332

something	in	the	future.	That	is,	using	checklists	to	prevent	failures	from	recurring.

Checklists	As	A	Repair	Guide

We’ve	talked	about	various	ways	to	formalize	and	communicate	your	troubleshooting	knowledge,	such	as	the
venerable	“troubleshooting	tree.”	Troubleshooting	trees	are	good	for	situations	where	there	are	a	lot	of	“if	X	do	this,	but
if	Y	then	do	this	instead”	branches.	Trees	easily	communicate	an	extraordinary	level	of	complexity	with	respect	to	the
discovery	phase	of	the	fix-it	process.	I’ve	seen	dense	troubleshooting	trees	that	look	like	circuit	diagrams	when	viewed
from	a	distance.

Just	as	often,	you’ll	have	troubleshooting	recipes	that	are	simply	a	series	of	steps	that	must	be	done	in	a	particular
order.	While	the	more	open-ended	problem	discovery	phase	may	be	better	suited	to	trees,	the	repair/correction	phase
is	usually	linear	and	therefore	well	suited	to	a	checklist.	In	my	company,	we	used	troubleshooting	checklists	for
recovery	situations,	like	restoring	a	database.	These	procedures	would	have	so	many	steps,	needing	to	be	done	in	the
correct	sequence,	that	making	a	checklist	was	essential.

Checklists	As	Preventative	Medicine

If	you’ve	fixed	enough	things,	the	thought	that	“This	was	preventable!”	is	bound	to	cross	your	mind	at	some	point.	Even
more	so	if	you	are	consistently	scrutinizing	your	breakdowns	with	a	formal	method	like	5	Whys.	Checklists	are
appropriate	for	any	human-machine	interaction,	especially	for	those	situations	where	the	person	at	the	controls	can
prevent	something	bad	from	happening	by	altering	their	behavior.

For	operators:	when	I	say	“operators,”	I	mean	anyone	who	uses	machines	for	work,	the	people	actually	getting	the
job	done.	Of	course,	this	is	a	huge	class	of	people:	every	organization	has	a	broad	section	of	their	employees	that
utilize	machines,	big	and	small,	to	accomplish	their	work.	There’s	usually	a	right	way	and	a…less	than	right	way	to
operate	a	machine,	but	checklists	go	beyond	education	of	“do’s	and	don’ts.”	Training	may	improve	awareness,	but
there	will	be	situations	where	you	need	something	done	the	right	way	every	time.	If	you’re	encountering	failures
that	could	be	prevented	through	an	enforced	procedure,	the	checklist	is	a	great	match.	Consider	physically
attaching	a	checklist	to	a	machine	so	that	it	gets	used	every	time.
For	designers:	since	this	section	is	about	prevention,	let’s	go	all	the	way	back	to	the	people	who	are	responsible	for
creating	machines.	Many	firms	make	machines	or	tools	that	are	used	internally:	manufacturer	and	consumer	all	in
one.	I’ve	worked	in	software,	where	this	is	especially	true:	we’d	often	write	programs	for	our	own	purposes,	as	well
as	for	external	clients.	When	you	make	your	own	tools,	you	will	inevitably	discover	their	flaws	when	they	fail.	Be
sure	to	learn	from	these	incidents	by	pushing	that	knowledge	all	the	way	back	into	the	design	process.	Consider	a
“design	principles	checklist”:	we	had	one	for	our	programmers	that	asked	them	to	consider	things	like	security	and
performance	when	developing	a	new	feature	or	fixing	a	bug.

Doing	The	Right	Thing…Automatically

For	all	the	benefits	of	the	checklist,	it	still	requires	vigilance.	What	good	is	a	checklist	if	it’s	not	enthusiastically
used	every	time?	Therefore,	it	helps	to	have	a	workforce	that	is	educated	on	its	benefits.	But	education	may	not	be
enough	to	force	adoption,	so	the	checklist	will	likely	need	management	support	as	an	official	policy.	Teams	must	be
trained	to	use	the	checklist	as	a	point	of	collaboration,	and	the	organizational	culture	must	tolerate	challenging
superiors	when	an	item	is	missed.	And	so	on	and	so	forth:	you	can	see	the	checklist	benefits	from	an	ecosystem	that	is
favorable	to	it	sustained	use.

The	organization	that	has	integrated	the	checklist	is	an	advanced	species,	but	I	believe	there	is	another	level	beyond
that,	where	you	use	automation	and	alter	workflows	to	mitigate	the	need	for	checklists.	Let	me	give	you	an	example
that	shows	this	transition:	when	Discovery	Mining	first	launched,	I	was	the	de	facto	systems	administrator.	Setting	up	a
new	server,	I	would	do	everything	by	hand:	build	the	computer,	install	the	operating	system,	partition	the	hard	drives,
set	the	networking	parameters,	choose	the	administrator	password,	load	the	correct	software	packages,	etc.	As	we
continued	to	grow,	the	number	of	servers	also	grew.	Because	I	was	doing	everything	by	hand,	every	server	turned	out	a
little	bit	different.	I’d	eventually	catch	these	discrepancies,	but	they	would	often	lead	to	problems,	and	sometimes	even
an	outage	of	our	service!

To	correct	the	situation,	I	made	a	checklist:	I	wrote	down	all	the	steps	for	setting	up	a	server.	Following	the	checklist
whenever	I	deployed	a	new	server	dropped	my	error	rate	substantially.	Also,	it	was	now	easy	to	get	help	for	this	task

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 333

https://artoftroubleshooting.com/2013/02/26/troubleshooting-trees/
https://artoftroubleshooting.com/2013/03/14/down-to-the-roots/

when	I	finally	hired	our	first	systems	administrator.	Using	the	checklist,	we	set	up	a	few	servers	together.	With	checklist
in	hand,	he	was	able	to	take	over	from	there.	By	the	way,	this	is	a	good	example	of	how	checklists—or	any
documentation—can	be	the	basis	for	collaboration	and	delegation.

The	checklist	worked	well	and	was	far	superior	to	the	“artisanal”	phase	that	came	before:	errors	stemming	from
incorrect	server	configurations	dropped	dramatically.	However,	it	wasn’t	perfection.	Forgetfully,	sometimes	the
checklist	wouldn’t	be	used.	Even	when	it	was,	occasionally	a	step	would	be	missed.	Also,	now	we	were	really	growing
fast	and	we	might	need	to	install	20	new	servers	in	a	single	day.	People	would	try	to	set	up	multiple	servers	at	a	time
and	get	confused	as	to	where	they	were	in	the	checklist.	We	needed	a	new	solution	for	this	“high-volume”	era	and	we
found	it	in	the	world	of	Configuration	Management	(specifically,	we	used	a	software	package	called	Puppet).	Once
Puppet	was	deployed	on	our	servers,	we	specified	the	ideal	configuration	and	the	configuration	management	software
would	enforce	it	everywhere	in	our	infrastructure.	The	software	even	protected	against	errors	after	installation:	if	a
systems	administrator	came	along	and	made	a	change	to	a	server	that	violated	the	established	policy,	it	would
automatically	be	rolled	back	and	made	right.	Beautiful.

From	then	on,	I	was	fanatical	about	having	our	systems	“do	the	right	thing”	on	their	own.	If	you’re	using	a	checklist	to
ensure	a	tricky	sequence	of	events	goes	correctly,	you	have	to	ask	yourself,	“Why	is	it	so	hard	for	people	to	get	this
workflow	right?	Why	have	we	designed	something	that	is	so	prone	to	failure	that	it	requires	a	checklist?”

It’s	a	fair	question	and	may	lead	you	to	some	big	improvements.	Going	back	to	the	story	of	the	origin	of	the	checklist,
we	can	push	ourselves	and	think	of	ways	to	do	better.	Can	we	add	another	layer	of	automated	safety	so	that	the
checklist	isn’t	the	only	thing	standing	between	life	and	death?	What	if	that	Boeing	299	had	a	single	button	that	adjusted
all	of	the	plane’s	settings	to	“takeoff”	mode	(including	disengaging	the	gust	locks)?	Or,	a	warning	system	that	would
blink	and	beep	if	the	engines	were	started	while	the	gust	locks	were	still	engaged?	Better	yet,	perhaps	the	ignition
system	could	be	wired	so	that	it’s	impossible	to	start	the	engines	if	the	gust	locks	are	engaged.	Or,	what	about	a	backup
system	that	would	automatically	disengage	the	gust	locks	if	the	plane	exceeded	a	certain	speed?

If	you	combine	these	kinds	of	improvements	with	the	corrective	power	of	the	checklist,	any	task	can	be	done	safely.

Saving	Lives

The	final	chapter	of	The	Checklist	Manifesto	is	a	gripping	account	of	the	checklist	actually	saving	someone’s	life.	This
time	it	is	Gawande	himself	who	sees	the	benefits	first-hand,	although	he	was	initially	reluctant	to	introduce	it	to	his
operating	room:

But	in	my	heart	of	hearts—if	you	strapped	me	down	and	threatened	to	take	out	my	appendix	without	anesthesia
unless	I	told	the	truth—did	I	think	the	checklist	would	make	much	of	a	difference	in	my	cases?	No.	In	my	cases?
Please.

Atul	Gawande,	The	Checklist	Manifesto 	1

Although	I	have	readily	advised	others	to	use	them,	I’ll	admit	that	in	the	past	I’ve	also	been	reluctant
to	personally	adopt	process-related	constraints	on	how	I	work.	Like	Gawande,	I	used	to	think	that,	because	I’m	good	at
what	I	do,	using	something	like	a	checklist	was	beneath	me.

But,	I’ve	been	humbled	too	many	times	to	think	I’m	above	the	checklist.	Even	with	vigilance,	talent,	and	experience,
you	will	make	mistakes.	As	a	pilot,	I’ve	seen	first-hand	the	value	of	checklists.	I’ve	flown	the	Cessna	172,	a	relatively
simple	airplane	(at	least	compared	to	a	modern	airliner).	Even	so,	the	172‘s	checklist	contains	over	100	items!	Here’s
the	checklist	for	the	B-25,	a	WWII-era	bomber.	As	you	can	see,	there’s	a	lot	to	get	right:

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 334

http://en.wikipedia.org/wiki/Configuration_management
http://en.wikipedia.org/wiki/Puppet_(software)
http://en.wikipedia.org/wiki/Cessna_172

The	checklist	for	the	B-25	Mitchell	Bomber.
(image:	U.S.	Army	Air	Forces	–	Office	of	Flying	Safety	/	Internet	Archive)

Do	you	think	you	could	remember	all	this	all	the	time?	Me	neither!	But	you	know	that	every	item	on	that	checklist	has
been	the	source	of	trouble,	perhaps	even	a	fatality,	for	some	unfortunate	pilot.

Let’s	return	to	Dr.	Gawande’s	close	call.	During	surgery	one	day,	he	accidentally	makes	a	tear	in	a	patient’s	 vena
cava	(one	of	the	large	veins	that	carries	blood	into	the	heart):

But	we	had	run	the	checklist	at	the	start	of	the	case.	When	we	had	come	to	the	part	where	I	was	supposed	to
discuss	how	much	blood	loss	the	team	should	be	prepared	for,	I	said,	“I	don’t	expect	much	blood	loss.	I’ve	never
lost	more	than	one	hundred	cc’s.”	I	was	confident.	I	was	looking	forward	to	this	operation.	But	I	added	that	the
tumor	was	pressed	right	up	against	the	vena	cava	and	that	significant	blood	loss	remained	at	least	a	theoretical
concern.	The	nurse	took	that	as	a	cue	to	check	that	four	units	of	packed	red	cells	had	been	set	aside	in	the	blood

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 335

https://archive.org/details/PilotTrainingManualForTheMitchellBomber
http://en.wikipedia.org/wiki/Vena_cava

bank,	like	they	were	supposed	to	be—“just	in	case,”	as	she	said.

They	hadn’t	been,	it	turned	out.	So	the	blood	bank	got	the	four	units	ready.	And	as	a	result,	from	this	one	step
alone,	the	checklist	saved	my	patient’s	life.

Atul	Gawande,	The	Checklist	Manifesto 	1

Reading	this	for	the	first	time	was	very	moving—if	you’re	a	process	aficionado,	it	doesn’t	get	more	beautiful	than	this.
Of	course,	I	highly	recommend	reading	The	Checklist	Manifesto	for	the	whole	story,	including	how	the	nascent
adoption	of	the	checklist	in	medicine	has	significantly	reduced	surgical	complications.	Also,	take	a	look	at	Gawande’s
companion	“Checklist	for	Checklists,”	which	outlines	the	principles	for	creating	a	really	effective	checklist.

But,	you	don’t	need	any	more	preparation,	you’re	ready	to	begin	working	with	checklists	right	now.	I	hope	I’ve	made
the	case	for	how	simple	yet	powerful	they	are!	When	you	start	using	them,	you	too	can	experience	the	kind	of	payoff
Dr.	Gawande	had	in	his	operating	room,	of	a	crisis	averted	and	a	job	well	done.

References:

Header	image:	“STS-96	mission	specialist	Ellen	Ochoa	beside	the	Volatile	Removal	Assembly	Flight	Experiment
(VRAFE)	located	in	the	Spacehab	DM	during	the	flight.	Ochoa	is	floating	upside	down	beside	the	module	and	is
holding	a	checklist.”	June	2,	1999.	NASA.	Retrieved	from	Flickr,
https://www.flickr.com/photos/nasacommons/29863224741/.
1	Atul	Gawande.	The	Checklist	Manifesto:	How	To	Get	Things	Right, 	(New	York:	Metropolitan	Books,	2009),	pgs.
18,	187,	191.
2	Walter	J.	Boyne,	“The	Checklist,”	Air	Force	Magazine.	August,	2013.
3	“WHO	Guidelines	for	Safe	Surgery”	(First	Edition,	2008),	World	Health	Organization,	pg.	8.
4	Model	299	Crash	Fact	Sheet. 	National	Museum	of	the	US	Air	Force.

Making	A	List,	Checking	It	Off	was	originally	published	October	1,	2013.

Notes:

Making	A	List,	Checking	It	Off	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 336

http://www.projectcheck.org/checklist-for-checklists.html
https://www.flickr.com/photos/nasacommons/29863224741/
http://www.airforcemag.com/MagazineArchive/Pages/2013/August%202013/0813checklist.aspx
http://www.atulgawande.com/documents/WHOGuidelinesforSafeSurgery.pdf
https://www.nationalmuseum.af.mil/Visit/Museum-Exhibits/Fact-Sheets/Display/Article/610002/model-299-crash/

Failure	Most	Foul:	Fraud	and	Sabotage

People	trust	each	other	by	default,	and	most	of	the	time	we’re	right	to	do	so.	Society	would	break	down	if	we
distrusted	everything	that	everybody	did.

Alex	Chaffee

In	the	Big	Idea,	I	laid	out	my	thesis	for	The	Art	Of	Troubleshooting:	that	“all	machine	problems	are	human	problems.”
Unfortunately,	there’s	a	class	of	“human	problems”	that	you	need	to	be	aware	of,	the	deliberate	and	malevolent	kind.
We’re	talking	about	things	like	fraud	and	sabotage.	You	need	to	recognize	these	as	possibilities	when	you	are	out	in
the	field	solving	problems.

The	troubleshooting	strategies	I’ve	presented	have	been	discussed	in	a	context	you	probably	weren’t	even	aware	of:
that	the	people	you	are	working	with	share	the	goal	of	having	your	systems	operate	smoothly. 	Sure,	there	may	be
personality	conflicts,	differences	of	opinion,	attempts	to	be	helpful	that	are	ultimately	misleading,	or	even	some
outright	hostility	if	someone	feels	like	their	territory	is	being	violated.	However,	at	a	base	level,	most	of	the	people	you
interact	with	will	respect	your	goal	of	getting	a	system	running	again.	Even	if	they	don’t	offer	to	lend	a	hand,	usually
the	worst	that	will	happen	is	that	they	will	be	indifferent	to	your	efforts.	When	it	comes	to	your	co-workers,	a	common
goal	is	implicit	in	your	relationship.	After	all,	if	they	didn’t	support	the	purpose	of	your	organization,	even	at	the
superficial	level	of	“it’s	only	for	the	paycheck,”	they’d	be	working	somewhere	else!

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 337

https://artoftroubleshooting.com/2011/09/13/the-big-idea/
https://artoftroubleshooting.com/strategies/

When	someone	intentionally	violates	the	tacitly	held	belief	that	“we’re	all	on	the	same	team,”	things	are	going	to	get
weird—and	ugly.	Stopping	a	machine	from	working	on	purpose	adds	a	wrinkle	to	the	normal	“A	causes	B”	model	that
you’re	used	to	relying	on	for	troubleshooting.	That’s	because	the	“A”	that	causes	“B”	is	typically	an	unintentional	force
(wear	and	tear,	unforeseen	consequences,	acts	of	nature,	etc.).	If	you’re	not	considering	the	possibility	of	intentional
failures,	you	will	be	entertaining	theories	that	belong	in	a	Tolkien	novel.	The	hands	of	a	malevolent	person	can	make
things	happen	that	look	like	magic.

Is	someone	trying	to	bring	down	your	house?	Some	industries	are	very	aware	of	the	possibility	of	“intentional
failures.”	You	should	be	too…

(image:	Charles	O’Rear	/	The	U.S.	National	Archives)

Failures	And	Judgements

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 338

http://www.flickr.com/photos/usnationalarchives/7006581850/

The	origin	of	every	machine	is	mankind’s	purposeful	intentions:	that’s	ultimately	the	sense	in	which	“all	machine
problems	are	human	problems.”	By	now,	our	collective	experience	tells	us	that	all	machines	eventually	break
down.	Deploying	a	machine	for	a	given	purpose	carries	with	it	an	unspoken	assumption	of	failure	somewhere	down
the	road.	Routine	maintenance	and	periodic	replacement	are	responses	to	this	reality.

Even	though	we	know	that	all	machines	will	eventually	fail,	the	how	and	when	are	often	unexpected.	Sure,	you	may
know	that	your	car	can	break	down,	but	you	didn’t	know	that	it	would	gasp	its	final	breath	last	Tuesday	in	the	midst	of
rush-hour	traffic.	Unfortunately,	the	inevitability	of	your	car’s	demise	does	not	give	you	specific	knowledge	of	the	exact
date	and	time.	Isn’t	it	interesting	that	we	live	in	a	world	where	it’s	certain	that	every	machine	will	eventually	break
down,	and	yet	our	experience	of	those	failures	is	one	of	surprise?

Even	a	well-maintained	system	can	unexpectedly	malfunction,	so	we	don’t	judge	a	machine’s	owner	when	that
happens,	at	least	not	in	a	moralistic	“you	are	a	bad	person”	kind	of	way.	If	we	rely	upon	a	company’s	services	(and
hence,	their	machines)	and	they	are	unable	to	make	good	on	their	promises,	we	may	judge	them	as	being	incompetent
for	not	having	a	contingency	plan	or	sufficient	redundancy.	However,	no	one	says	Netflix	is	evil	when	they	can’t	watch
movies	on	Christmas	Eve.	Again,	the	fact	that	the	other	party	is	acting	with	positive	intentions	and	in	good	faith	makes
the	difference.

Intentions	Don’t	Matter

Intentions	may	matter	for	moral	judgements,	but	when	it	comes	to	repair,	a	failure	is	a	failure.	It	doesn’t	matter	if	the
cause	is	a	squirrel	in	the	substation,	normal	wear	and	tear,	a	storm,	forgotten	maintenance,	or	sabotage,	because	the
goal	of	fixing	something	is	always	the	same:	fulfill	the	need	that	the	machine	was	serving.

When	it	comes	to	choosing	strategies,	the	efficacy	of	a	troubleshooting	recipe	is	tied	to	the	design	of	a	system.	The
intentions	(or	lack	thereof)	behind	a	cause	is	not	a	factor.	For	example,	 “copying	one	that	works”	or	quickly	narrowing
in	via	half-splitting	will	be	effective,	or	not	effective,	based	on	the	machine’s	nature.	Think	of	it	like	this:	a	cut	needs
the	same	medical	care	regardless	of	whether	the	knife	pierced	the	skin	accidentally	or	intentionally.	Stitches,	bandages,
and	antiseptic	are	used	in	either	case:	the	reality	of	the	wound	is	the	primary	consideration,	not	the	story	behind	the
injury.	The	broad	strategies	I’ve	given	you	are	useful	precisely	because	they	are	applicable	to	a	wide	variety	of	failure
scenarios,	independent	of	cause’s	origin.	If	you	had	to	know	the	origin	of	a	cause	before	you	chose	a	strategy,
troubleshooting	would	be	difficult,	given	that	the	cause	is	frequently	unknown!

Therefore,	when	fixing	something	damaged	by	sabotage,	troubleshooting	can	proceed	like	any	other	case.	However,
there	are	some	special	considerations,	especially	during	the	“cleaning	up”	phase.	At	some	point	during	a	repair,	every
good	troubleshooter	asks,	“Why	did	this	happen?	How	can	it	be	prevented	from	recurring?”	These	questions	have
special	pitfalls	with	respect	to	deliberate	failures.

Mistaking	Intentional	For	Natural

Happily,	most	malfunctions	are	free	of	malice.	They	are	unintended	and	happen	in	the	normal	course	of	people	trying
to	complete	their	work.	Many	times,	no	human	is	even	present	during	a	breakdown;	the	machine	is	operating	on	its
own	when	it	dies,	and	the	problem	is	discovered	later.	This	is	the	bulk	of	our	experience	and	we	know	that	experience
is	a	powerful	guide.	But	this	well-worn	path	can	blind	a	troubleshooter	to	the	possibility	of	sabotage,	resulting	in
failures	that	look	supernatural.

Be	especially	suspicious	when	troubleshooting	anything	related	to	the	security	of	people	or	property.	We’re	talking
about	things	like	cash	registers,	safes,	locks,	lockers,	and	entryways	(doors	and	windows).	Likewise	with	their	digital
equivalents:	firewalls,	account	credentials,	virus	scanners,	etc.	I’m	always	urging	you	to	consider	context	when
troubleshooting;	awareness	of	the	environment	in	which	a	system	is	installed	is	instrumental	to	finding	causes.	Up	till
now,	that	meant	paying	attention	to	things	like	upstream	or	downstream	machines	in	a	workflow,	shared	resources	like
electricity,	or	environmental	variables	like	temperature	and	humidity.	Now,	we’ll	add	one	last	critical	part	of
a	machine’s	context:	the	people	who	have	access	to	it.	What	if	someone	doesn’t	share	the	goal	of	having	everything
run	smoothly?

Be	sure	to	consider	the	entire	ecosystem	of	which	your	systems	are	a	part:	attacks	can	come	from	customers,	vendors,
and	the	general	public.	Finally,	there’s	always	the	possibility	of	the	“inside	job,”	where	your	own	co-workers	are	up	to
no	good.

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 339

http://techblog.netflix.com/2012/12/a-closer-look-at-christmas-eve-outage.html
http://www.nytimes.com/2013/09/01/opinion/sunday/squirrel-power.html
https://artoftroubleshooting.com/2012/04/16/copy-one-that-works/
https://artoftroubleshooting.com/2013/04/25/clear-up-to-here/
https://artoftroubleshooting.com/strategies/

Mistaking	Natural	For	Intentional

On	the	flip	side,	there	are	industries	and	occupations	that	are	hyper-aware	of	the	possibility	of	foul	play:	banks,
casinos,	drug	dealers,	credit	card	issuers,	pawn	shops,	couriers,	accountants,	etc.	A	never-ending	history	of	fraud	and
theft	have	plagued	these	professions,	leading	to	a	higher	level	of	suspicion	in	the	possibility	of	foul	play.	If	something
weird	happens	on	the	floor	of	a	casino,	you	can	be	sure	the	pit	boss	is	watching	out	for	a	scam.	When	a	large	amount
of	money	goes	missing	from	an	account,	most	bank	managers	probably	are	thinking	about	embezzlement	alongside
other,	more	benign	possibilities.

This	mindset	is	justified:	the	casino	that	isn’t	proactively	searching	for	people	trying	to	cheat	them	won’t	stay	open	for
long.	Likewise,	the	too	trusting	pawnbroker	will	have	an	unpleasantly	short	career.	For	these	scam-prone	industries,
their	paranoia	is	verified	by	experience,	by	the	innumerable	attempts,	foiled	and	successful,	to	“bring	down	the	house.”

We’ve	already	seen	how	the	naive	troubleshooter,	closed	to	the	possibility	of	foul	play,	can	be	blindsided.	On	the
other	hand,	always	suspecting	malevolence	can	be	a	tiresome	burden	for	you	and	your	employees.	Low-trust
environments,	where	everyone	is	a	always	a	suspect,	are	not	conducive	to	getting	the	best	out	of	your	people.

Leaving	Traces

Sometimes,	it	will	be	very	difficult	to	tell	the	difference	between	an	intentional	failure	and	a	“normal”	one.	If	the
person	sabotaging	you	is	smart,	they	may	take	great	care	to	prevent	detection	and	make	the	failure	appear	like	it	was
naturally	caused.	As	always,	a	heightened	sense	of	awareness	and	being	present	can	aid	in	the	detection	of	foul	play.
Rich	Kral,	a	veteran	HVAC	repairman,	related	this	to	me	when	I	interviewed	him	about	troubleshooting:

There	have	been	times	when	I’ve	questioned	whether	or	not	it	[a	breakdown]	has	been	sabotage.	You	have	a
particular	piece	of	machinery,	and	you	open	up	the	panel	and	think,	“Someone	else	has	been	in	here,”	when
you’re	the	only	one	who	was	supposed	to	have	been	in	there.	You	can	tell,	almost	by	the	energy,	that	someone
else	has	been	in	the	panel,	because	you	put	your	screws	in	a	certain	way.	I	have	a	certain	sense	of	feel	for
tightness	and	when	they	are	so	doggone	tight	that	I	can’t	get	them	undone	without	stripping	the	screws,	I	think,
“Somebody	has	done	this,	somebody	else	has	been	here,	this	is	not	me.”	You	know	your	own	trail,	you	know	your
own	path,	you	know	where	you	have	walked	before,	and	you	can	sense	when	someone	else	is	following	you.	It’s
very	real.

Rich	Kral

Can	you	focus	and	tune	into	these	nuances	when	a	failure	seems	suspicious?	What	in	a	machine’s	context	seems	out	of
place?	Rich	is	clearly	in	touch	with	the	details	of	a	situation	when	he	can	tell	by	just	the	tension	of	the	screws	whether
someone	else	has	been	“following	his	path.”

A	Pattern	Of	Behavior

Goldfinger’s	flat,	hard	stare	didn’t	flicker.	He	might	not	have	heard	Bond’s	angry-gentleman’s	outburst.	The	finely
chiselled	lips	parted.	He	said,	‘Mr	Bond,	they	have	a	saying	in	Chicago:	“Once	is	happenstance.	Twice	is
coincidence.	The	third	time	it’s	enemy	action.”’

Ian	Fleming,	Goldfinger	1

Sadly,	the	ambiguity	between	intentional	and	unintentional	often	means	that	 multiple	instances	of	sabotage	may	be
required	to	definitively	tell	the	difference.	Good	record-keeping	is	essential	to	begin	piecing	together	the	puzzle.	For
further	examples,	we	turn	to	the	real-life	thriller	The	Cuckoo’s	Egg	by	Clifford	Stoll.	In	this	compelling	book,	Stoll
recounts	his	exploits	of	tracking	a	hacker	that	has	penetrated	the	computer	systems	at	Lawrence	Berkeley	National
Laboratory.	The	tale	starts	out	modestly,	with	the	lab’s	accounting	system	showing	a	very	small	discrepancy	($0.75!)	in
the	billing	records	for	the	computer	system:

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 340

http://en.wikipedia.org/wiki/Pit_manager

The	computer’s	books	didn’t	quite	balance;	last	month’s	bills	of	$2,387	showed	a	75-cent	shortfall.

Now,	an	error	of	a	few	thousand	dollars	is	obvious	and	isn’t	hard	to	find.	But	errors	in	the	pennies	column	arise
from	deeply	buried	problems,	so	finding	these	bugs	is	a	natural	test	for	a	budding	software	wizard.

Clifford	Stoll,	The	Cuckoo’s	Egg	2

Notice	that	Stoll	understandably	assumes	a	benign	cause	as	he	begins	his	investigation:	he	thinks	the	cause	of	this
bookkeeping	error	is	a	bug	in	the	accounting	software.	This	is	a	good	example	of	the	bias	I	was	talking	about	before:
we	usually	attribute	failures	to	unintentional	causes	before	considering	more	sinister	explanations.	My	aim	is	to	not
change	this	basic	belief,	just	to	put	sabotage	on	your	list	of	possibilities.

Once	you	suspect	sabotage,	you	will	need	to	start	collecting	information	(often	from	surveillance)	to	prove	or	disprove
the	theory.	To	make	this	happen,	Stoll	“liberates”	every	printer	in	the	organization	and	unrolls	his	sleeping	bag	on	the
office	floor:

All	we’d	need	are	fifty	teletypes,	printers,	and	portable	computers.	The	first	few	were	easy	to	get—just	ask	at	the
lab’s	supplies	desk.	Dave,	Wayne,	and	the	rest	of	the	systems	group	grudgingly	lent	their	portable	terminals.	By
late	Friday	afternoon,	we’d	hooked	up	a	dozen	monitors	down	in	the	switchyard.	The	other	thirty	or	forty	monitors
would	show	up	after	the	laboratory	was	deserted.	I	walked	from	office	to	office,	liberating	personal	computers
from	secretaries’	desks.	There’d	be	hell	to	pay	on	Monday,	but	it’s	easier	to	give	an	apology	than	get	permission.

Clifford	Stoll,	The	Cuckoo’s	Egg	2

The	thing	I	like	about	The	Cuckoo’s	Egg	is	that	Stoll’s	zeal	really	comes	through	in	his	account.	You	get	a	good	sense
of	the	engrossing	passion	that	accompanies	the	pursuit	of	someone	who’s	wronged	you.	I’ve	felt	these	same	emotions,
having	also	been	harmed	by	a	saboteur	at	work.	During	that	incident,	I	too	felt	like	I	would	go	to	the	ends	of	the	earth
to	catch	the	perpetrator.	Be	careful	though,	while	this	passion	can	give	you	the	energy	to	see	an	investigation	through
to	the	end,	it	needs	to	be	tempered	with	the	goal	of	justice.	While	Stoll	clearly	becomes	obsessed	with	catching	his
hacker,	he	also	involves	law	enforcement	and	coordinates	his	investigation	with	them.	You	should	do	the	same.

When	it	comes	to	interpreting	patterns	of	behavior,	you	might	need	to	accelerate	the	process.	If	you	want	to	make	sure
it’s	actually	sabotage,	then	decoys,	honeypots,	or	traps	should	be	on	the	table	(warning:	make	sure	what	you’re	doing
is	legal!).	However,	you’ll	need	to	balance	catching	your	nemesis	with	getting	your	regular	job	done.	Stoll	grapples
with	this	tension	as	his	preoccupation	with	the	hacker	begins	to	conflict	with	his	other	work	responsibilities:

Lawrence	Berkeley	Laboratory	was	tired	of	wasting	time	on	the	chase.	I	hid	my	hacker	work,	but	everyone	could
see	that	I	wasn’t	tending	to	our	system.	Scientific	software	slowly	decayed	while	I	built	programs	to	analyze	what
the	hacker	was	doing.

Clifford	Stoll,	The	Cuckoo’s	Egg	2

The	Simplest	Explanation

If	you’re	dealing	with	sabotage,	but	mentally	exclude	it	as	a	possibility,	you’re	going	to	find	yourself	entertaining	wild,
fantastic	theories	of	how	A	caused	B.	For	a	related	example	of	the	flights	of	fancy	people	embark	on	when	something
obvious	is	excluded,	we	turn	to	the	repeated	attempts	to	explain	the	fascinating	Voynich	Manuscript.	The	Voynich
Manuscript	is	a	book	from	the	15th	century	that	contains	an	unknown	language,	interlaced	with	mysterious	diagrams
and	artwork.	What	does	it	mean?	Who	wrote	it?	It’s	captivated	many	people	over	the	centuries.

Some	of	the	best	minds	have	tried	to	break	its	code,	even	up	to	the	current	era	with	the	latest	cryptographic	methods.
Then	along	came	Gordon	Rugg,	a	linguist	at	Keele	University.	Rugg’s	work	says	that	the	manuscript	means	nothing,
that	it’s	just	a	clever	hoax!3	Not	only	that,	but	he	also	showed	how	a	similar	text	could	be	created.	Now,	what’s	more

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 341

http://en.wikipedia.org/wiki/Honeypot_(computing)
http://www.csicop.org/si/show/the_voynich_manuscript_the_book_nobody_can_read/
http://www.wired.com/wired/archive/12.09/rugg.html

likely:	that	the	text’s	cipher	is	so	well	constructed	that	it	continues	to	elude	even	the	most	advanced	code-breaking
techniques?	Or,	that	it’s	just	a	clever	ruse?	I	love	a	good	mystery,	but	my	money	would	be	on	the	latter.

Once	you	make	the	assumption	that	the	Voynich	Manuscript	means	something,	you’re	lead	to	believe	some	very
unlikely	things,	among	them	that	500	years	of	scrutiny	and	advancements	in	cryptography	still	aren’t	good	enough	to
make	sense	of	it!	Rugg’s	work	may	be	brilliant,	but	the	foundation	of	his	breakthrough	was	elegantly	simple:	a
willingness	to	dispense	with	the	notion	that	it	had	meaning.	Similarly,	if	you	catch	yourself	entertaining	bizarre	theories
about	the	cause	of	a	failure	while	troubleshooting,	make	sure	you	double-check	your	key	assumptions.	Among	the
most	important	to	reexamine	is	that	something	just	“happened	on	its	own.”

A	page	from	the	mysterious	Voynich	Manuscript.	Is	it	a	hoax?
(image:	Yale	University	Library)

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 342

http://brbl-dl.library.yale.edu/vufind/Record/3519597?image_id=1006092

Keep	Good	Records

When	starting	to	investigate	what	you	think	is	a	case	of	sabotage,	get	out	a	notebook	and	start	writing.	What	happened,
when,	and	your	response	will	be	invaluable	information	as	the	situation	evolves.	When	assessing	why	Stoll	prevailed,
it’s	tempting	to	focus	on	the	fact	that	he	both	was	smart	and	determined,	but	his	diligent	documentation	was	equally
important.	He	kept	a	logbook	of	everything	that	happened,	constantly	updating	it	as	the	investigation	proceeded.	This
record	allowed	him	to	cross-check	information,	make	correlations,	and	narrow	the	search.	Oh	yeah,	and	afterwards	he
got	to	turn	it	into	a	best-selling	book.	How’s	that	for	an	incentive?

Stoll’s	record-keeping	made	a	huge	difference	in	the	trial	that	eventually	convicted	Markus	Hess,	who	was	selling	the
information	to	the	KGB.	Between	his	logbook,	phone	traces,	and	printouts	of	Hess’	activity,	the	case	was	easily	won:

How	did	I	feel?	Nervous,	yet	confident	in	my	research.	My	logbook	made	all	the	difference.	It	was	like	presenting
some	observations	to	a	room	of	astronomers.	They	may	disagree	with	the	interpretation,	but	they	can’t	argue	with
what	you	saw.

Clifford	Stoll,	The	Cuckoo’s	Egg	2

Picking	Up	The	Pieces

Cleaning	up	after	an	act	of	sabotage	is	a	messy	thing.	It’s	going	to	have	an	entirely	different	feeling	than	a	typical	round
of	root	cause	analysis.	The	main	difference	is	healing	your	violated	trust.	Obviously,	if	the	culprit	was	one	of	your	own,
the	impact	on	your	staff’s	morale	will	be	much	worse.	Either	way,	your	team’s	cohesion	will	be	tested	both	during	the
incident	and	after.	People	don’t	like	to	be	betrayed.

Not	Dishonest,	But	Not	Exactly	Forthcoming	Either

Deception	lies	along	a	spectrum:	not	everything	will	be	so	extreme	as	the	active	malevolence	of	a	saboteur.	There	are
many	gray	areas,	like	when	someone	just	isn’t	giving	you	the	whole	story.	I’ve	often	encountered	a	reluctance	to	be
forthcoming	when	interviewing	people	about	a	system	failure.	In	my	experience,	it	usually	has	to	do	with	a	feeling	of
embarrassment.	A	person	may	feel	bad	because	they	view	themselves	as	partly	to	blame	for	a	breakdown.	They	may
also	feel	stupid	that	they	didn’t	know	the	“proper”	way	to	operate	a	machine.	If	the	situation	borders	on	negligence,
perhaps	they	want	to	avoid	the	consequences	of	being	held	accountable.

They	may	react	to	these	feelings	by	being	overly	vague,	curt,	or	by	omitting	details	that	implicate	themselves.	Dealing
with	this	is	tricky:	if	you	push	too	hard	for	answers	and	back	them	into	a	corner,	they	may	double	down	and	start	lying.
At	the	same	time,	if	they	were	partially	responsible,	you	want	to	make	sure	they	understand	their	role	in	the	problem
and	how	they	can	prevent	it	from	happening	in	the	future.

For	milder	cases	where	malice	isn’t	likely,	I	think	there’s	a	middle	way.	I’ve	investigated	situations	where	a	person	was
obviously	feeling	guilty	and	their	behavior	communicated	embarrassment.	Forcing	them	to	say,	“I	was	an	idiot!”	is	a
face	losing	proposition	that	isn’t	necessary	to	make	your	point.	Without	making	them	admit	guilt,	I	would	launch	into
an	impromptu	training	session	regarding	proper	use	of	the	system	in	question.	While	the	subtext	is	“you	were
responsible	and	I’m	teaching	you	the	right	way,”	this	allows	them	to	graciously	accept	your	guidance,	free	of	shame.

References:

Header	image:	Thew,	R.	&	Fuseli,	H.	Shakespeare–Hamlet–Prince	of	Denmark	/	painted	by	H.	Fuseli	R.A.;
engraved	by	R.	Thew.	1796.	London:	published	by	J.	&	J.	Boydell.	[Photograph]	Retrieved	from	the	Library	of
Congress,	https://www.loc.gov/item/95521789/.
1	Ian	Fleming,	Goldfinger	(London:	Penguin	Books,	2004),	pg.	166.
2	Clifford	Stoll,	The	Cuckoo’s	Egg:	Tracking	a	Spy	Through	the	Maze	of	Computer	Espionage, 	(New	York:	Pocket
Books,	2005),	pgs.	3,	24,	195,	396.
3	Joseph	D’Agnese,	“Scientific	Method	Man,”Wired.	September,	2004.

Failure	Most	Foul:	Fraud	and	Sabotage	was	originally	published	November	15,	2013.

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 343

https://www.loc.gov/item/95521789/
http://www.wired.com/wired/archive/12.09/rugg.html

Notes:

Failure	Most	Foul:	Fraud	and	Sabotage	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 344

Release	The	Chaos	Monkeys:	Intentionally	Creating
Failures

The	best	way	to	get	better	at	troubleshooting	is	to	break	things	on	purpose.

Austin	Quade

My	Grandfather	gave	me	one	piece	of	romantic	advice:	before	getting	serious,	take	a	prospective	mate	camping.	Not
RV’ing	with	all	its	creature	comforts,	but	rather	roughing	it	on	a	backwoods	adventure.	He	said	that	hopefully	it	would
rain,	your	sleeping	bag	would	get	soaked,	you’d	arrive	at	the	campsite	after	sunset	and	be	forced	to	set	up	in	the	dark,
the	fire	would	be	impossible	to	start,	and	large	ravenous	bears	would	eat	your	food.	The	upside	wouldn’t	end	there:
you’d	also	get	to	see	your	partner	at	their	worst	and	get	a	glimpse	of	what	they	were	really	made	of.	Ah,	those	hardy
Depression-era	values.	While	courtship	doesn’t	have	to	include	a	trip	down	the	river,	Deliverance-style,	I	always
thought	his	scheme	was	a	good	idea.	It’s	best	to	know	how	a	person	will	react	in	advance	of	when	you	might	really
need	them.

Once	again	troubleshooting	mirrors	life:	it’s	also	true	that	important	knowledge	about	a	machine	is	gained	when	seeing
it	at	its	worst,	and	best	obtained	before	it	matters.	Like	my	Grandfather’s	camping	regimen,	there	are	ways	to	learn	this

Release	The	Chaos	Monkeys:	Intentionally	Creating	Failures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 345

http://en.wikipedia.org/wiki/Deliverance

critical	information	about	a	system,	in	advance.	That’s	right,	you	don’t	have	to	wait	for	a	breakdown	to	occur	to
understand	what	something	will	do	under	duress.	We’ll	take	a	lesson	from	the	world	of	product	testing,	where
designers	concoct	shenanigans	to	see	how	a	new	model	will	react	to	a	variety	of	conditions,	trying	to	get	it	to	fail
before	it	gets	in	a	customer’s	hands.	While	this	is	something	that	you	might	normally	associate	with	manufacturing,	I
want	you	to	understand	that	it’s	also	a	tool	for	the	troubleshooter.

Are	you	ready	to	let	them	run	wild	among	your	machines?
(image:	Tambako	The	Jaguar	/	CC	BY-ND	2.0)

Monkey	On	Your	Back

When	it	comes	to	creating	mischief	to	foster	understanding,	the	entertainment	company	 Netflix	has	one	of	the	most
advanced	systems	ever	conceived.	When	Netflix	moved	their	services	into	the	“cloud,”	they	encountered	some	unique
problems.	Amazon’s	Web	Services	(aka,	AWS,	a	cloud	computing	environment)	offered	savings	to	the	bottom	line,	but
presented	some	challenges	that	forced	them	to	rethink	the	design	of	some	of	their	systems.	The	details	aren’t	important,
but	suffice	it	to	say	that	the	co-tenancy	of	a	shared	resources	environment	includes	a	more	variable	performance	profile
and	lowered	reliability	versus	what	the	Netflix	engineers	were	used	to	in	their	own	data	centers.

Netflix	took	this	new	way	of	life	and	embraced	it:

3.	The	best	way	to	avoid	failure	is	to	fail	constantly.

We’ve	sometimes	referred	to	the	Netflix	software	architecture	in	AWS	as	our	Rambo	Architecture.	Each	system	has
to	be	able	to	succeed,	no	matter	what,	even	all	on	its	own.	We’re	designing	each	distributed	system	to	expect	and
tolerate	failure	from	other	systems	on	which	it	depends.

If	our	recommendations	system	is	down,	we	degrade	the	quality	of	our	responses	to	our	customers,	but	we	still
respond.	We’ll	show	popular	titles	instead	of	personalized	picks.	If	our	search	system	is	intolerably	slow,
streaming	should	still	work	perfectly	fine.

5	Lessons	We’ve	Learned	Using	AWS 	1

But,	we	haven’t	gotten	to	the	best	part.	Out	of	this	desire	to	be	truly	resilient,	the	 Chaos	Monkey	was	born:

Release	The	Chaos	Monkeys:	Intentionally	Creating	Failures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 346

http://www.flickr.com/photos/tambako/5089891823/
http://creativecommons.org/licenses/by-nd/2.0/deed.en
http://www.netflix.com/
http://en.wikipedia.org/wiki/Cloud_computing
https://artoftroubleshooting.com/2013/03/22/dedicated-and-shared-resources/
https://netflixtechblog.com/5-lessons-weve-learned-using-aws-1f2a28588e4c

One	of	the	first	systems	our	engineers	built	in	AWS	is	called	the	Chaos	Monkey.	The	Chaos	Monkey’s	job	is	to
randomly	kill	instances	and	services	within	our	architecture.	If	we	aren’t	constantly	testing	our	ability	to	succeed
despite	failure,	then	it	isn’t	likely	to	work	when	it	matters	most	–	in	the	event	of	an	unexpected	outage.

5	Lessons	We’ve	Learned	Using	AWS 	1

That’s	right,	the	Chaos	Monkey	is	a	program	that	is	constantly	scurrying	about,	shutting	things	 off.	Not	within	the	safe
padded	walls	of	a	test	environment,	but	in	Netflix’s	live,	customer-facing	service.	I	want	you	to	understand	just	how
cool	and	unusual	this	is:	it’s	like	hiring	some	crazy	drunk	guy	to	run	around	your	workplace,	his	shirt	off,	screaming
obscenities,	flipping	switches,	slamming	doors,	and	knocking	things	off	desks	and	shelves.	And	no	one	cares	because
your	processes	are	so	robust.

In	addition	to	the	challenges	of	moving	their	service	to	a	shared	environment,	Netflix	has	another	problem:	at	peak
times,	their	service	has	been	responsible	for	1/3	of	all	Internet	traffic	in	North	America.2	One	third!	Netflix	is	operating
at	a	scale	that	is	hard	to	test.	How	does	one	simulate	that	much	Internet	traffic?	Exactly,	you	don’t.	Netflix’s	test
environment	will	always	be	a	toy	compared	to	the	real	thing,	so	the	Chaos	Monkey	is	even	more	vital.	Without
something	like	it,	there	wouldn’t	be	any	way	to	definitively	know	the	resiliency	of	their	infrastructure.

It’s	Yours,	So	You	Can	Wreck	It

Netflix	has	some	special	challenges,	and	the	cookie-cutter	building	blocks	of	a	cloud	computing	environment	makes
the	Chaos	Monkey	a	feasible	option	for	them.	You’re	probably	thinking,	there’s	no	way	I’d	introduce	such	a	thing	into
my	work	environment!	And	of	course,	you’d	be	right:	unless	you’re	prepared	for	it,	unleashing	a	Chaos	Monkey	in
your	workplace	would	put	you	on	the	fast	track	to	going	out	of	business.	However,	there	are	lessons	and	strategies	to
be	extracted	from	the	concept.

First	off,	just	get	used	to	the	notion	that	stress	testing	is	an	option	for	your	machines,	tools,	etc.	As	noted	before,	this	is	a
way	of	life	for	manufacturers	who	want	to	protect	their	reputations;	they	need	to	know	what’s	going	to	happen	when
people	actually	use	their	products.	Plus,	consumers	demand	this	information:	they	want	to	understand	if	a	product	is
going	to	be	suitable	for	their	particular	use.	While	the	cover	of	a	marketing	brochure	may	feature	beautiful	people,	the
“technical	specifications”	section	is	vital	for	making	a	buying	decision.	These	“technical	specifications”	come	from
somewhere—testing!

While	manufacturers	are	well	versed	in	testing,	I	feel	it’s	something	many	consumers	don’t	consider.	The	product	is
unwrapped	from	its	beautiful	packaging.	There	it	sits,	not	to	be	messed	with,	only	to	be	used	as	intended.	Maybe	some
of	this	reluctance	is	a	fear	of	loss:	you	paid	your	hard-earned	money	for	a	new	thingamajig	and	so	the	last	thing	you
want	to	do	is	to	harm	it	while	testing	its	limits.	However,	if	lives	or	livelihoods	are	dependent	upon	something,	a	higher
standard	of	certainty	is	required.

Stirring	Up	Trouble

You	might	not	be	as	brave	as	Netflix:	it	takes	a	lot	of	preparation	and	the	right	circumstances	to	make	mischief	in	your
production	environment.	However,	there	still	are	plenty	of	opportunities	to	know	your	systems	by	seeing	them	at	their
worst,	albeit	in	safer	ways.	Consider	making	a	test	environment,	with	duplicates	of	the	machines	you	use	in
production,	so	that	you	can	muck	around	and	learn	without	risking	disruptions	to	your	business.	What	happens	if	you
shut	off	a	particular	subsystem	or	reintroduce	a	known	broken	part?	Try	it	and	observe	the	results.

One	major	caveat	is	to	understand	that	test	environments	are,	by	definition,	not	the	same	as	the	real	thing.	Knowing
when	it’s	appropriate	to	extrapolate	your	results,	to	make	predictions	about	what	will	happen	in	real	life,	can	be
extremely	difficult:	history	is	littered	with	great	ideas	that	tested	well,	but	ultimately	didn’t	work.	The	only	generic
advice	one	can	give	is	that	tests	should	closely	resemble	the	real	conditions,	in	all	possible	dimensions:	time,
machines,	usage,	personnel,	environment,	and	context.	This	list	is	a	mirror	of	the	one	presented	in	“Duplicate	The
Problem.”	Both	testing	and	problem	duplication	share	the	same	of	goal	of	trying	to	match	the	details	in	which
problems	originate,	that	original	context	of	the	production	environment.

Release	The	Chaos	Monkeys:	Intentionally	Creating	Failures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 347

https://netflixtechblog.com/5-lessons-weve-learned-using-aws-1f2a28588e4c
http://news.cnet.com/8301-1023_3-57546405-93/netflix-gobbles-a-third-of-peak-internet-traffic-in-north-america/
https://artoftroubleshooting.com/2011/12/13/duplicate-the-problem/

Find	a	wide	open	space	and	let	‘er	rip.
(image:	Library	of	Congress)

We	did	a	lot	of	testing	at	Discovery	Mining,	mostly	of	the	non-destructive	variety.	We	also	heavily	vetted	new
equipment	before	putting	it	into	service:	for	example,	running	a	new	server	through	its	paces,	perhaps	for	as	long	as	a
week,	before	trusting	it	in	our	infrastructure.	Later	on,	we	got	our	vendors	to	build	our	tests	into	their	manufacturing
processes.	We’d	order	a	new	machine,	and	it	would	be	tested	and	broken-in	to	our	specifications	before	it	was	shipped
to	us.

Speaking	of	which,	a	break-in	period	is	a	great	idea	for	new	or	recently	repaired	machines,	especially	if	it	can	be	done
before	a	machine	is	deployed	for	real	work.	Statistically,	a	good	number	of	failures	will	be	clustered	around	those
initial	hours	of	usage.	That’s	where	manufacturing	defects,	installation	problems,	and	configuration	errors	first	show
themselves.

If	you	designed	a	machine	yourself,	or	have	cobbled	together	something	in	the	style	of	a	systems	integrator,	then	it’s	up
to	you	to	understand	its	limits.	The	software	and	hardware	industries	have	long	used	a	technique	called	“fault
injection.”	This	is	where	errors	are	purposefully	introduced	to	a	system	and	the	results	are	observed.	This	process	is
applicable	to	both	the	digital	and	analog	worlds:	whether	it’s	sending	bad	data	to	an	API,	shorting	a	connection	on	a
circuit	board,	or	loosening	a	belt	in	an	engine,	the	principle	is	the	same.

So,	here’s	to	monkeying	around!	Go	forth	and	create	some	controlled	mischief.

References:

Header	image:	“NASA	Langley	Researches	Crash	Test.”	August	21,	2013.	NASA.	Retrieved	from	Flickr,
https://www.flickr.com/photos/nasacommons/14883442256/.
1	5	Lessons	We’ve	Learned	Using	AWS. 	The	Netflix	Tech	Blog.	December	16,	2010.
2	Don	Reisinger,	“Netflix	gobbles	a	third	of	peak	Internet	traffic	in	North	America,” 	CNET.	November	7,	2012.

Release	The	Chaos	Monkeys:	Intentionally	Creating	Failures 	was	originally	published	November	19,	2013.

Notes:

Release	The	Chaos	Monkeys:	Intentionally	Creating	Failures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 348

https://www.loc.gov/resource/hhh.al1195.photos/?sp=40
https://www.flickr.com/photos/nasacommons/14883442256/
https://netflixtechblog.com/5-lessons-weve-learned-using-aws-1f2a28588e4c
http://news.cnet.com/8301-1023_3-57546405-93/netflix-gobbles-a-third-of-peak-internet-traffic-in-north-america/

You’re	Not	Done	Until	You	Tell	Someone	Else

When	you	solve	a	problem,	you	want	to	share	it	with	everybody!

Jamie	Karrick

The	final	act	of	any	tough	troubleshooting	exercise	should	be	to	communicate	the	result.	I	learned	this	lesson	the	hard
way:	after	going	the	extra	mile	to	solve	a	problem,	I’d	often	see	it	reappear	later	because	I	was	silent	on	the	matter.
Your	heroics	won’t	provide	a	lasting	benefit	to	society	(or	yourself)	if	the	co-worker	sitting	next	to	you	is	unaware	of	the
dragons	you’ve	slain.

When	I	think	about	this	problem,	my	mind	throws	up	an	image	of	 George	Mallory.	Was	he	the	first	to	summit	Everest?
Sadly,	it	doesn’t	matter	because	he	didn’t	live	to	either	confirm	or	deny	the	possibility.	While	I	respect	the	idea	of
climbing	Everest	solely	because	“it’s	there,”	if	I	was	going	to	die	trying	to	be	the	first,	an	entry	in	the	record	books
would	be	a	nice	consolation	prize.	How	different	our	view	of	history	would	be	if	a	photo	or	diary	survived,	showing
that	Mallory	was	the	first	to	the	top!	Again,	communication	is	vital.

As	a	troubleshooter,	your	mountaintop	has	the	fix	at	the	summit.	The	“getting	down,”	as	Sir	Edmund	Hilary	puts	it,	is
learning	from	what	happened	and	then	communicating	these	lessons	to	others.	Your	metaphorical	climb	shouldn’t	be
considered	complete	without	all	of	these	elements.	This	is	just	a	general	principle,	so	it’s	up	to	you	to	figure	out	the
best	way	to	feed	back	your	insights	to	your	colleagues,	your	industry,	and	the	world.	We’ve	discussed	many	options	for
learning	from	a	breakdown	like	root	cause	analysis	(e.g.,	5	Whys)	and	routine	maintenance	programs.	Likewise,	there
an	equally	wide	range	of	options	for	communicating	the	results	of	a	fix-it	victory	(defeats,	too):	checklists,

You’re	Not	Done	Until	You	Tell	Someone	Else	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 349

http://en.wikipedia.org/wiki/George_Mallory

troubleshooting	trees,	manuals,	service	bulletins,	incident	reports,	on-line	discussion	forums,	meetings	with	your
colleagues,	etc.

It’s	a	tragedy	to	possess	hard-won	knowledge	and	not	take	that	last	step	to	disseminate	it	to	others.	Who	could	be	saved
by	what	you	know?	That’s	the	spirit	in	which	I	wrote	this	book,	it’s	not	enough	for	me	to	be	good	at	fixing	things—I
want	to	live	in	a	world	filled	with	amazing	troubleshooters.

Pick	up	the	mic,	crank	the	volume,	and	tell	the	world	what	happened.
(image:	Juan_Alvaro	/	CC	BY	2.0)

Toot	Your	Own	Horn	Once	In	A	While	Or	Be	Taken	For	Granted

In	your	role	as	a	troubleshooter,	you’re	often	responsible	for	maintaining	the	“invisible	infrastructure”	of	people’s	daily
lives.	These	are	the	things	that	people	take	for	granted	until	they	break	down:	their	car,	Internet	connection,	electricity
in	the	wall	socket,	hot	water,	etc.	The	problem	with	things	that	people	take	for	granted	is	they’re	not	always
appreciated	like	they	should	be.	In	“Zen	And	The	Art	Of	Routine	Maintenance,” 	I	related	the	ancient	parable	of	the	3
physicians	who	were	brothers.	I	told	you	to	be	like	the	eldest	who	“sees	the	spirit	of	sickness	and	removes	it	before	it
takes	shape,	so	his	name	does	not	get	out	of	the	house.”	I’ll	add	a	qualification	to	that:	be	like	that	eldest	brother,	but
also	be	your	own	PR	agency	and	make	sure	that	your	name	does	get	around.	You	won’t	keep	your	job	if	you	don’t!

As	CTO,	I	managed	the	systems	group	at	Discovery	Mining.	This	department	maintained	the	infrastructure	for	the
company:	the	servers	that	ran	the	web	site,	the	phone	system	that	the	salespeople	used	to	call	clients,	the	printers	that
the	project	managers	used	to	print	their	reports.	And	so	on.	Exactly	the	kind	of	stuff	that	easily	falls	into	the	“taken	for
granted”	category.	At	first,	when	presenting	to	the	company	during	our	weekly	engineering	meeting,	I	would	focus	on
recent	incidents	and	secondarily	on	progress	reports	for	our	current	projects.	This	seemed	reasonable	because	“if	it
bleeds,	it	leads,”	just	like	the	5	o’clock	news,	right?

It	took	a	while,	but	eventually	I	realized	that	the	systems	team	and	I	weren’t	getting	much	credit	for	everything	that
went	right.	Sure,	the	duty	of	maintaining	all	those	servers,	computer	networks,	phones,	and	printers	was	in	our	job
description,	but	that	doesn’t	mean	it	should	go	unappreciated.	Also,	focusing	just	on	incidents	made	it	seem	like	there
was	more	chaos	and	instability	in	our	infrastructure	than	there	really	was.	It	was	likely	the	same	phenomenon	as	the
“Mean	World	Syndrome”:	a	diet	of	sensational	news	with	a	large	helping	of	violent	crime	can	make	you	believe	your
surroundings	are	more	dangerous	than	the	statistics	would	indicate.	By	fixating	people’s	attention	on	just	the	bad
things,	I	had	become	the	tabloid	news	of	the	company.

Therefore,	I	decided	to	change	course	and	try	a	different	approach.	On	a	regular	basis,	I	started	to	include	an	overview
of	all	the	the	things	that	had	gone	right	during	our	weekly	meetings.	Basically,	periodic	reminders	of	all	those	things

You’re	Not	Done	Until	You	Tell	Someone	Else	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 350

http://www.flickr.com/photos/31590610@N03/5408706936/
http://creativecommons.org/licenses/by/2.0/deed.en
https://artoftroubleshooting.com/2012/04/30/zen-and-the-art-of-routine-maintenance/
http://en.wikipedia.org/wiki/Mean_world_syndrome

that	people	relied	on,	but	might	take	for	granted.	During	the	latter	part	of	my	tenure,	after	our	data	collection	program
was	bearing	fruit,	I	was	able	to	show	these	“hidden	successes”	graphically.	I’d	include	things	like:

“Did	you	know?	The	website	was	up	100%	last	month.”
“Our	Internet	connection	has	plenty	of	spare	bandwidth.	I	hope	you’ve	been	enjoying	your	YouTube	and	FaceBook
time.”
“Isn’t	it	nice	that	the	printers	worked	while	you	were	preparing	for	that	big	presentation?”
“Look	at	all	that	extra	disk	storage	we	anticipated	you’d	need.	Now	we’re	able	to	make	good	on	that	big	contract
that	the	sales	team	just	closed.”

Learn	Then	Tell

My	parting	advice	is	to	go	forth	and	learn	from	your	failures.	When	you	have	insights	to	share,	spread	the	news	far	and
wide.

After	that,	you’re	done.

And	I	am	too.

Do	your	work,	then	step	back.
The	only	path	to	serenity.

Tao	Te	Ching	(verse	9)	1

References:

Header	image:	Rizzuto,	A.,	photographer.	Group	of	onlookers	gathered	around	two	men	engaged	in	conversation.
United	States,	New	York.	November,	1953.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2020636033/.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	9.

You’re	Not	Done	Until	You	Tell	Someone	Else 	was	originally	published	November	19,	2013.

Notes:

You’re	Not	Done	Until	You	Tell	Someone	Else	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 351

https://www.loc.gov/item/2020636033/

The	Boy	Who	Cried	Wolf

But	this	time	the	villagers,	who	had	been	fooled	twice	before,	thought	the	boy	was	again	deceiving	them,	and
nobody	stirred	to	come	to	his	help.	So	the	Wolf	made	a	good	meal	off	the	boy’s	flock,	and	when	the	boy
complained,	the	wise	man	of	the	village	said:	“A	liar	will	not	be	believed,	even	when	he	speaks	the	truth.”

The	Shepherd’s	Boy,	Aesop’s	Fables

Over	the	years,	in	my	tenure	as	a	manager,	I	went	through	several	iterations	of	“What	exactly	is	my	role?”	Various
answers	have	appeared:	mentor,	disciplinarian,	maker	of	lists,	taskmaster,	procurer	of	take-out	food,	motivational
speaker,	and	he-who-should-just-get-out-of-the-way.

What	exactly	I	was	managing	seemed	highly	contextual,	fluid,	and	often	fleeting:	this	week’s	challenges	were	not	like
last	week’s.	Therefore,	a	flexible	approach	seemed	important.	However,	sometimes	I	would	discover	a	management
principle	that	would	turn	out	to	be	long-lived.	While	I	was	in	charge	of	a	group	of	systems	administrators,	I	had	a
powerful	epiphany.	For	them,	I	realized	the	thing	I	was	actually	managing	was	their	attention	span.	Indeed,	I	found	it
was	a	very	precious	commodity.

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 352

https://archive.org/details/folklorefable0017vari/page/28/mode/2up

Next	time,	it	might	not	be	a	goat…
(image:	Library	of	Congress)

False	Alarms

At	Discovery	Mining,	the	systems	group	maintained	the	infrastructure	that	sustained	a	very	complicated	web	site.	In
line	with	our	mantra	“know	before	the	client	knows,”	we	implemented	an	extensive	monitoring	system.	If	something
bad	was	going	to	happen,	we	wanted	to	to	be	aware	of	it,	proactively	meeting	it	head	on.	To	that	end,	we
automatically	kept	track	of	thousands	of	aspects	of	the	systems	under	our	care.	The	level	of	detail	was	impressive:
within	an	individual	server	we	could	tell	if	a	specific	disk	drive	was	working	or	the	speed	of	its	cooling	fans.

You	can	imagine	that	monitoring	all	this	minutiae	produced	a	staggering	amount	of	data.	We	did	our	best	to	make	sure
all	our	records	were	well-organized	and	graphically	represented,	so	they	could	be	quickly	consulted	on	an	as-needed
basis.	However,	in	the	case	of	an	emergency,	our	monitoring	system	was	designed	to	grab	our	attention	by	lighting	up
our	phones,	pagers,	and	email	inboxes.

Tuning	our	alerting	system	was	a	never-ending	struggle,	and	perfectly	illustrates	the	theme	of	this	article.	That’s
because	not	every	alert	turned	out	to	be	indicative	of	a	real	problem.	There	were	many	moments	when	our	monitoring
system	morphed	into	that	boy	who	cried	wolf,	with	my	staff	playing	the	role	of	the	circumspect	villagers.

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 353

https://www.loc.gov/item/2003688622/

A	sea	anchor	might	provide	stability	and	slow	you	down,	but	it’s	not	attached	to	a	fixed	point.
(image:	US	Patent	3472195)

Normalization	Of	Deviance

Diane	Vaughan,	a	professor	of	sociology	at	Columbia	University,	studied	the	 Challenger	space	shuttle	disaster	in
depth.	Her	resulting	book,	The	Challenger	Launch	Decision,	introduces	an	interesting	concept	called	the	normalization
of	deviance:

Social	normalization	of	deviance	means	that	people	within	the	organization	become	so	much	accustomed	to	a
deviant	behavior	that	they	don’t	consider	it	as	deviant,	despite	the	fact	that	they	far	exceed	their	own	rules…

Diane	Vaughan	1

I	think	this	problem	is	richly	relevant	for	those	that	troubleshoot	professionally:	by	definition,	front-line	technicians
deal	with	“deviant	behaviors”	(aka,	malfunctions)	on	a	constant	basis.	When	broken	becomes	part	of	your	daily
routine,	it	will	reset	your	sense	of	normal.	Likewise,	the	warning	systems	that	troubleshooters	rely	upon	are	subject	to
these	same	psychological	factors:	too	many	false	signals	will	eventually	be	ignored,	just	like	the	shepherd	boy.

Homo	sapiens	has	been	remarkably	adaptive,	finding	a	way	to	survive	in	deserts,	jungles,	mountains,	prairies,	and	the
frozen	tundra.	Eking	out	a	living	in	a	wide	variety	of	climates,	terrains,	and	social	conditions	is	a	noble	part	of	our
humanity.	This	ability	is	surely	aided	by	various	psychological	coping	mechanisms:	if	you	are	thrown	into	an
unfavorable	environment,	the	ability	to	reset	your	expectations,	focusing	on	what	“success”	means	in	the	new	context,
is	a	must.

But	alas,	virtues	can	also	be	vices:	because	our	expectations	are	elastic,	they	can	be	ratcheted	up	indefinitely	in	a
never-ending	exercise	of	“keeping	up	with	the	Joneses.”	If	you’ve	ever	spent	time	on	the	hedonic	treadmill,	you	know
that	a	constantly	moving	target	of	success	can	feel	unsatisfying;	this	is	why	people	crave	experiences	that	restore	a
sense	of	perspective	to	their	lives.

Those	same	human	capabilities	that	favor	adaptation	appear	to	be	at	work	when	it	comes	to	the	normalization	of
deviance.	Vaughn	eloquently	explains	the	process:

Signals	of	potential	danger	tend	to	lose	their	salience	because	they	are	interjected	into	a	daily	routine	full	of
established	signals	with	taken-for-granted	meanings	that	represent	the	well-being	of	the	relationship.	A	negative
signal	can	sometimes	become	simply	a	deviant	event	that	mars	the	smoothness	of	the	ongoing	routine.	As	the
initiator’s	unhappiness	grows,	the	number,	frequency,	and	seriousness	of	signals	of	potential	danger	increase.
While	they	would	surely	catch	the	partner’s	attention	if	they	came	all	at	once,	this	is	not	the	case	when	new
signals	are	introduced	slowly	amid	others	that	indicate	stability.	A	series	of	discrepant	signals	can	accumulate	so
slowly	that	they	become	incorporated	into	the	routine;	what	begins	as	a	break	in	the	pattern	becomes	the	pattern.
Small	changes—new	behaviors	that	were	slight	deviations	from	the	normal	course	of	events—gradually	become

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 354

https://www.google.com/patents/US3472195
http://en.wikipedia.org/wiki/Space_Shuttle_Challenger_disaster
https://en.wikibooks.org/wiki/Professionalism/Diane_Vaughan_and_the_normalization_of_deviance#Description_of_Normalization_of_Deviance
http://en.wikipedia.org/wiki/Hedonic_treadmill

the	norm,	providing	a	basis	for	accepting	additional	deviance.

Diane	Vaughan,	The	Challenger	Launch	Decision 	2

I	definitely	observed	this	process	in	action	with	my	team.	Over	the	course	of	a	typical	day,	a	systems	administrator
would	receive	many	“signals”	that	included	phone	calls,	emails,	project	managers	stopping	by	to	ask	for	updates,
colleagues	asking	for	help,	etc.	This	“daily	routine	full	of	established	signals”	would	be	mixed	with	messages	generated
by	our	monitoring	system.	Within	this	context,	evidence	of	deviations	can	accumulate	slowly.	Every	new	alert	can
subtly	move	your	mental	anchor,	integrating	it	as	the	“new	normal.”

Alert	Fatigue

Let’s	go	back	to	the	early	days	of	the	Homeland	Security	Advisory	System.	I	remember	making	travel	plans	when	this
scheme	was	in	place:

Living	in	orange	and	yellow:	what	does	it	mean	to	always	be	on	alert?	
(image:	Wikimedia	Commons)

If	the	threat	level	was	blue	or	yellow	or	orange,	what	exactly	was	I	supposed	to	do	about	it?	Not	travel	at	all?	The	most
frustrating	thing	about	this	advisory	system	was	the	lack	of	specifics.	The	precise	nature	of	the	threats	underlying	the
various	levels	were	a	secret,	making	it	hard	to	assess	your	own	situation.	Most	importantly,	what	particular	course	of
action	should	be	taken	in	response	to	a	given	threat	level?

Using	the	DHS’	“Chronology	of	Changes	to	the	Homeland	Security	Advisory	System,”3	I	filled	in	a	table	with	the	time
spent	at	the	various	threat	levels*:

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 355

http://en.wikipedia.org/wiki/Anchoring
http://en.wikipedia.org/wiki/Homeland_Security_Advisory_System
http://commons.wikimedia.org/wiki/File:Hsas-chart_with_header.svg
http://www.dhs.gov/homeland-security-advisory-system

Start End Days Threat	Level

Mar	12,
2002

Sep	9,	2002 182 YELLOW

Sep	10,
2002

Sep	23,
2002

14 ORANGE

Sep	24,
2002

Feb	6,	2003 136 YELLOW

Feb	7,	2003 Feb	26,
2003

20 ORANGE

Feb	27,
2003

Mar	16,
2003

18 YELLOW

Mar	17,
2003

Apr	15,
2003

30 ORANGE

Apr	16,
2003

May	19,
2003

34 YELLOW

May	20,
2003

May	29,
2003

10 ORANGE

May	30,
2003

Dec	20,
2003

205 YELLOW

Dec	21,
2003

Jan	8,	2004 19 ORANGE

Jan	9,	2004 Jul	31,
2004

205 YELLOW

Aug	1,	2004 Nov	9,	2004 101 ORANGE

Nov	10,
2004

Jul	6,	2005 239 YELLOW

Jul	7,	2005 Aug	11,
2005

36 ORANGE

Aug	12,
2005

Aug	9,	2006 363 YELLOW

Aug	10,
2006

Aug	12,
2006

3 RED

Aug	13,
2006

Apr	20,
2011

1712 ORANGE

*The	RED	threat	level	was	used	only	once	from	August	10-12,	2006:	“for	flights	originating	in	the	United	Kingdom	bound	for	the	United
States.”	The	rest	of	the	USA’s	commercial	aviation	activity	was	set	to	ORANGE	for	these	days.	For	this	brief	split	situation,	I	counted	these	days
under	the	higher	threat	level	(RED)	set	by	the	DHS.

Then	added	everything	up:

Days % Threat	Level

3 0.09% RED

1942 58.37% ORANGE

1382 41.54% YELLOW

0 0.00% BLUE

0 0.00% GREEN

3327 100.00% 	

Given	that	the	threat	level	was	never	set	below	“elevated”	(yellow),	you	have	to	wonder	about	the	effect	of	having	the
The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 356

entire	nation	on	alert	for	so	long.	When	I	added	it	all	up,	I	didn’t	realize	that	we	had	spent	over	5	years	at	the	orange
level	(“High”).	That’s	a	long	time!	Five	years	spent	doing	anything	will	eventually	become	your	baseline	point	of
reference,	the	“new	normal.”	But,	if	there	really	was	an	imminent	threat,	a	sense	of	normalcy	is	probably	not	what	the
designers	of	the	system	intended.

After	a	while,	I	did	what	millions	of	other	Americans	did:	ignore	the	Homeland	Security	Advisory	System.	This
phenomenon	is	called	“alert	fatigue”	and	is	well	known	in	the	health	care	industry ,	often	studied	in	the	context	of
doctors	grappling	with	the	deluge	of	alerts	created	by	medical	software.	Attention	is	a	finite	human	commodity	and
there’s	simply	a	limit	to	the	number	of	alarm	messages	that	can	be	processed	before	they	are	ignored	and	established
as	routine.

Mixed	Messages	and	Vigilance

As	we	were	monitoring	thousands	of	details	about	our	infrastructure	at	Discovery	Mining,	errors	made	configuring	or
tuning	our	alerts	would	also	be	multiplied	several	thousand-fold.	Sometimes,	the	system	would	generate	an
overwhelming	number	of	false	positives.	When	receiving	a	large	volume	of	alerts	over	the	course	of	a	short	period	of
time,	the	tendency	is	to	consider	all	the	messages	equally	important	(and	therefore,	unimportant!).

I	physically	cringed	every	time	our	monitoring	system	became	an	unrepentant	peddler	of	falsities,	as	I	knew	it	was
resetting	my	team’s	expectations	for	“normal.”	False	alarms	change	the	meaning	of	the	message	from	“this	is
important”	to	“this	can	be	ignored.”

Is	it	a	crisis	or	do	I	just	need	an	oil	change?
(image:	Open	Clip	Art)

Speaking	of	meaning,	be	careful	about	overloading	your	alerts.	The	venerable	Check	Engine	light,	found	on	the	dash	of
your	typical	car,	is	a	great	example	of	the	problems	associated	with	mixing	messages.	The	Check	Engine	light	used	to
be	a	big	deal:	it	meant	the	car	had	a	serious	problem,	and	ignoring	it	could	lead	to	“chuck	engine.”	However,	at	some
point,	it	became	fashionable	for	some	automobile	manufacturers	to	turn	on	the	Check	Engine	light	for	much	less	urgent
reasons,	among	them	the	need	for	scheduled	maintenance.

There’s	nothing	wrong	with	bringing	the	need	for	routine	maintenance	or	a	loose	gas	cap	to	a	driver’s	attention,	but
encumbering	the	Check	Engine	light	with	these	multiple	meanings	leads	to	all	the	problems	previously	discussed.
Overloading	is	not	quite	a	false	alarm,	but	the	effect	is	similar.	Diluting	a	warning’s	potency	predictably	leads	to
indifference,	especially	when	the	statistics	favor	the	less	urgent	problems.	I	used	to	take	the	Check	Engine	light	very
seriously,	but	these	additional	meanings	have	lead	me	to	be	nonchalant	about	its	appearance	on	the	dash.	A

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 357

http://www.amednews.com/article/20120416/business/304169973/1/
https://openclipart.org/detail/193925/check-engine-by-j_iglar-193925

catastrophic	engine	meltdown	is	a	comparatively	rare	event,	so	if	the	warning	can	mean	either	“crisis”	or	“get	an	oil
change,”	chances	are	it’s	the	more	benign	explanation.	Therefore,	I	have	reset	my	expectations	accordingly.	A	better
solution	would	be	to	preserve	the	Check	Engine	light’s	meaning	of	emergency	by	adding	a	separate	alert	for	those	less
critical	issues.

In	summary,	be	aware	of	the	effects	that	permanent	and	false	alerts	have	on	your	team.	Always	aim	for	a	1:1
relationship	between	triggered	alarms	and	consequences	felt.	If	your	processes	require	constant	vigilance,	like	those
required	for	aviation	or	medicine,	it’s	far	better	to	distill	warnings	into	action-oriented	processes	and	routines	(see:
checklists).	Alarms	should	always	result	in	doing,	and	it’s	even	better	if	the	actions	to	be	taken	are	clearly	laid	out	and
practiced	beforehand.

Sorry	about	the	false	alarm.	Can	I	go	outside	and	play	now?
(image:	Seattle	Municipal	Archives	/	CC	BY	2.0)

References:

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 358

https://artoftroubleshooting.com/2013/10/01/making-a-list-checking-it-off/
https://www.flickr.com/photos/seattlemunicipalarchives/3192740362
https://creativecommons.org/licenses/by/2.0/

Header	image:	Dave	Phillips,	photographer.	Retrieved	from	Unsplash,	https://unsplash.com/photos/Q44xwiDIcns.
1	Consulting	News	Line.	“Interview:	Diane	Vaughan”	May,	2008.
2	Diane	Vaughan.	The	Challenger	Launch	Decision:	Risky	Technology,	Culture,	and	Deviance	at	NASA 	(Chicago:
University	of	Chicago	Press,	1996),	pg.	414.
3	Department	of	Homeland	Security,	“Chronology	of	Changes	to	the	Homeland	Security	Advisory	System.”

The	Boy	Who	Cried	Wolf	was	originally	published	January	29,	2015.

Notes:

The	Boy	Who	Cried	Wolf	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 359

https://unsplash.com/photos/Q44xwiDIcns
http://www.consultingnewsline.com/Info/Vie%20du%20Conseil/Le%20Consultant%20du%20mois/Diane%20Vaughan%20(English).html
http://www.dhs.gov/homeland-security-advisory-system

Did	It	Ever	Work?

I	have	not	failed.	I’ve	just	found	10,000	ways	that	won’t	work.

Thomas	A.	Edison

As	a	troubleshooter,	you	have	one	big	advantage	over	your	fellow	engineers	and	inventors:	the	things	you	are	trying	to
repair	worked	at	some	point	in	the	past .	Inventors	dream	up	new	forms,	which	engineers	take	and	adapt	to	a	myriad	of
novel	contexts.	Manufacturers	then	replicate	these	models,	putting	them	in	the	hands	of	the	masses.	After	the	many
hurdles	required	to	finally	get	a	product	on	store	shelves,	the	question	of	“Will	it	work?”	has	likely	been	answered	in
the	affirmative.

Knowing	that	a	machine	once	worked	means	repair	can	focus	on	restoring	that	ideal.	Relying	on	these	existing
conceptual	models,	the	prior	efforts	of	inventors	and	engineers	become	assumptions	that	can	pragmatically	be	taken
for	granted.	Economics	drives	this	expediency:	it	would	be	costly	to	revalidate	the	long	chain	of	reasoning	that	led	to	a
machine’s	creation	(scientific	principles,	marketplace	conditions,	design	choices,	testing,	etc.)	every	time	you	wanted
to	make	a	repair.	Put	another	way,	it’s	much	easier	to	simply	assume	that	you	can	fix	it.

Did	It	Ever	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 360

https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/

Check	out	your	local	Flugtag	for	creative	examples	of	machines	that	aren’t	supposed	to	function.
(image:	brandsteve	/	CC	BY	2.0)

However,	there’s	a	critical	distinction	between	a	machine	operating	as	its	designers	intended	and	its	ability	to	meet
your	needs.	A	laptop	from	1986	may	boot	up	just	fine,	but	that’s	little	help	if	you	want	to	run	modern	applications.	A
system’s	operational	status	and	its	capacity	to	do	useful	work	(from	your	perspective),	are	two	equally	important,	but
different	dimensions.

Therefore,	my	personal	troubleshooting	script	now	includes	challenging	both	of	these	notions,	now	and	in	the	past.	A
malfunction	is	an	invitation	to	reconsider	the	underlying	need	and	the	way	it	was	being	served	by	a	particular	system.
Along	these	lines,	one	of	my	favorite	ways	to	start	an	investigation	is	by	inquiring	“Did	it	ever	work?”

I’m	often	surprised	at	the	answers	I	get	to	this	question.

Slipping	Past	The	Guards

My	name	is	on	the	building.

Henry	Ford	II

Let’s	consider	the	vetting	process	that	manufacturers	use	to	ensure	their	wares	will	be	suitable	for	a	given	purpose	and
accepted	by	their	customers.	For	companies	that	design	their	own	products,	there’s	usually	a	whole	array	of	people,
processes,	and	facilities	to	get	all	this	right:	prototyping,	specification	reviews,	testing	labs,	quality	assurance	engineers,
statistical	sampling	techniques,	proving	grounds,	focus	groups,	etc.	A	company’s	reputation	and	the	profit	motive	drive
their	adoption:	businessmen	don’t	want	to	damage	their	company’s	image	or	the	bottom	line	by	releasing	a	shoddy
product.	Also,	in	an	environment	where	information	is	free-flowing,	things	that	work	well	tend	to	be	rewarded	with
sales.	People	talk	and	word	gets	around,	good	or	bad.

While	the	free	market	system	creates	incentives	that	reward	good	products	and	punish	bad	ones,	the	process	is	a
feedback	loop	that	takes	time	(and	requires	your	participation!).	If	a	bad	product	slips	through	the	fine	mesh	of	a
company’s	vetting	process	and	then	is	pumped	up	by	a	well-tuned	marketing	machine,	you	may	be	the	recipient	of
something	that	truly	doesn’t	work.	I	think	the	worst	experiences	I’ve	had	along	these	lines	is	when	I	was	growing	up.
During	Saturday-morning	cartoons,	the	commercials	for	toys	made	them	look	so	amazing!	More	than	once	I	saved	my
money	or	cajoled	my	parents	for	some	new	toy,	only	to	bring	it	home	and	have	it	break	shortly	thereafter.	More	often
the	disappointment	was	emotional:	that	thing	I	had	coveted	from	afar	failed	to	live	up	to	the	grandiose	dreams	fueled

Did	It	Ever	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 361

http://en.wikipedia.org/wiki/Red_Bull_Flugtag
https://www.flickr.com/photos/brandsteve/2727367302/
https://creativecommons.org/licenses/by/2.0/
https://en.wikipedia.org/wiki/Toshiba_T1100
https://en.wikipedia.org/wiki/Saturday-morning_cartoon

by	those	slick	ads.

Unsafe	at	this	speed?	Not	every	design	is	a	good	one…
(image:	The	Library	of	Virginia)

Great	Expectations

It’s	a	subtle	point,	but	expectations	often	color	the	response	to	“Did	it	ever	work?”	This	is	why	I	find	it	such	an
interesting	question	to	ask	while	troubleshooting.	In	response,	I	will	frequently	hear	complaints	that	indicate	the
original	purpose	for	which	a	machine	was	acquired	remains	unfulfilled.

As	CTO	of	Discovery	Mining,	I	was	the	person	responsible	for	outfitting	a	large	portion	of	our	business	infrastructure.
This	was	one	of	the	most	satisfying	parts	of	my	job:	to	identify	a	pressing	need	and	then	find	the	perfect	thing	to	meet
that	need.	To	this	end	I	bought	desks,	computers,	fans,	phones,	printers,	lightbulbs,	toner,	extension	cords,	surge
protectors,	routers,	switches,	cables,	hard	drives,	tools,	and	lots	of	take-out	food.	I	had	a	bizarre	passion	for	product
research,	spending	hours	poring	over	spec	sheets,	diagrams,	and	feature	lists	to	find	exactly	the	right	matériel	to	move
our	business	forward.

However,	as	thorough	and	careful	as	I	was,	not	everything	I	bought	turned	out	to	be	effective.	For	example,	early	on
when	we	still	built	all	of	our	computers	by	hand,	I	outfitted	our	servers	with	removeable	hard	drive	enclosures.	The
idea	was	to	make	replacing	hard	drives	easier,	avoiding	the	hassle	of	taking	the	server	off	the	rack	and	opening	the
case.	Well,	that	was	the	theory	anyway.	We	eventually	discovered	that	this	particular	brand	of	enclosure	was
unreliable	and	would	cause	disks	to	go	offline.	When	managing	storage	in	a	RAID	(Redundant	Array	of	Independent
Disks)	configuration,	having	drives	go	AWOL	was	a	big	problem,	as	the	rebuild	times	could	last	days	and	significantly
slow	a	server	down.	More	frightening	was	the	risk	of	data	loss:	I	had	several	white-knuckle	moments	when	I	wasn’t
sure	if	an	array	was	going	to	be	recoverable.	My	expectations	were	that	the	enclosures	would	make	swapping	drives
easier	and	be	just	as	reliable	as	before.	This	turned	out	to	be	a	wrong	assumption.	At	the	time,	if	you	had	asked	me	if
they	worked	in	the	way	that	I	envisioned,	I	would	have	said	“Um…not	really.”

Sometimes,	I	would	buy	something	for	our	employees	and	follow	up	later,	only	to	find	that	my	purchase	really	hadn’t
improved	things.	Often	this	was	because	there	was	a	mismatch	between	what	I	heard	and	the	actual	needs	of	the
person	I	was	trying	to	help.	Another	variation	on	this	theme	was	that	a	machine	would	have	been	sufficient	for	a	given
purpose,	but	our	training	program	was	inadequate,	and	so	it	wasn’t	being	used	to	its	full	potential.	Lastly,	I’ve	seen

Did	It	Ever	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 362

http://content.time.com/time/specials/2007/article/0,28804,1658545_1658498_1657833,00.html
https://www.flickr.com/photos/library_of_virginia/7797538158/
https://en.wikipedia.org/wiki/RAID

mismatches	between	how	a	system	is	being	utilized	and	its	true	capabilities:	the	perception	may	be	that	it	“doesn’t
really	work,”	but	that’s	only	because	the	machine	is	being	asked	to	do	something	it	wasn’t	designed	to	do.

Be	careful	what	you	choose	to	repair,	lest	you	waste	your	time	on	something	that	never	really	worked	in	the
first	place…

(image:	Belmiro	de	Almeida	/	Wikimedia	Commons)

It	Worked	A	Long	Time	Ago	In	A	Galaxy	Far,	Far	Away…

Past	performance	is	not	an	indicator	of	future	results.

The	Tiny	Print	From	That	Thing	You	Lost	Money	On

For	those	who	employ	machines	to	do	their	bidding,	the	passage	of	time	results	in	an	ever-shifting	context	that	adds
further	complexity	to	the	problem	of	recreating	a	stellar	past	performance.	To	illustrate,	I	like	to	think	of	a	favorite	pair
of	jeans	that	I	once	owned:	this	perfect	specimen	of	denim	had	been	patched	and	repaired	so	many	times	that	I	called
them	my	Franken-jeans.	The	answer	to	the	question	“Did	they	ever	work?”	was	“Yes!”	However,	that	doesn’t	mean
these	pants	could	be	restored	back	to	their	original	state—too	many	threads	were	missing.

The	point	is	that	even	if	a	machine	worked	well	in	the	past,	that	doesn’t	mean	you	can	(easily)	return	there.	Classic	car
restorations	are	a	great	example	of	this	dilemma:	sure,	that	rusted	’57	Chevy	may	have	worked	in	the	past	(specifically,
in	’57).	However,	the	ravages	of	time	make	the	prior	accomplishments	of	machines	little	more	than	historical
footnotes.

Did	It	Ever	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 363

https://commons.wikimedia.org/wiki/File:Belmiro_de_Almeida._Arrufos,_1887.%25C3%25B3leo_sobre_tela,_c.i.d._89,1_x_116,1_cm._Museu_Nacional_de_Belas_Artes.jpg
https://en.wikipedia.org/wiki/1957_Chevrolet

It	might	still	work,	but	that	doesn’t	mean	you	can	use	it	to	watch	YouTube.
(image:	SDASM	Archives)

Guard	Your	Time

Questioning	if	something	ever	worked	is	an	important	way	to	protect	your	most	precious	resource:	time.	At	worst,
fixing	something	that	never	really	functioned	can	be	a	quixotic	quest;	at	best,	it’s	not	even	repair,	lying	somewhere
between	engineering	and	invention.	This	line	of	inquiry	can	also	reveal	the	unfulfilled	purposes	of	the	people	you	are
trying	to	help,	a	problem	that	can	be	wholly	independent	of	a	machine’s	functional	status.	As	I’ve	found	time	and
again,	assessing	and	then	aligning	yourself	with	that	underlying	need	is	the	sure	path	to	avoid	wasting	your	effort.

References:

Header	image:	Harris	&	Ewing,	photographer.	AVIATION,	ARMY,	COLLEGE	PARK.	TESTS	OF	CURTISS	PLANE
FOR	ARMY.	SINGLE	CONTROL.	United	States,	College	Park,	Maryland.	1912.	[Photograph]	Retrieved	from	the
Library	of	Congress,	https://www.loc.gov/item/2016863983/.

Did	It	Ever	Work?	was	originally	published	June	18,	2015.

Notes:

Did	It	Ever	Work?	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 364

https://www.flickr.com/photos/sdasmarchives/8126348190/
https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/
https://www.loc.gov/item/2016863983/

Network	Effects

The	Web	as	I	envisaged	it,	we	have	not	seen	it	yet.	The	future	is	still	so	much	bigger	than	the	past.

Tim	Berners-Lee

It	all	started	with	just	one:

Pretty	lonely,	huh?	Then	another	showed	up:

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 365

That’s	better.	A	third	joined	in:

A	fourth	and	fifth	too:

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 366

Then	six,	seven,	and	eight	really	opened	up	the	possibilities	to	connect:

Then,	one	got	a	little	too	popular	and	things	started	to	heat	up:

It’s	a	familiar	story…

Counting	Connections

Highly	interconnected	systems	are	among	the	most	important	of	our	modern	industrialized	civilization.	To	name	just	a
few	examples:	roads,	the	Internet,	pipelines,	electrical	grids,	financial	markets,	and	waterways.	If	you	somehow	don’t
rely	on	those	and	think	you’re	not	involved,	we	should	also	include	human	organizations	too:	businesses,	clubs,
governments,	churches,	families,	and	social	circles.	You	will	see	how	the	growth	of	the	connections	within	these
networks	are	a	double-edged	sword:	they	simultaneously	make	a	system	more	useful	and	increase	the	likelihood	of

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 367

congestion.

Let’s	start	the	discussion	by	introducing	the	Complete	Graph,	a	powerful	model	whose	form	I’ve	encountered	again
and	again	in	so	many	different	contexts.	Whatever	kind	of	systems	you	troubleshoot,	there’s	likely	a	portion	that
resembles	this	form.	The	Complete	Graph	is	a	mathematical	term	for	a	model	where	every	vertex	is	connected	to	every
other	vertex	(mathematicians	call	these	connections	“edges”).	Visually,	they	look	like	the	images	in	the	introduction	to
this	essay.	Here’s	a	Complete	Graph	with	11	vertices:

The	number	of	connections	in	a	Complete	Graph	can	be	described	mathematically	using	the	standard	formula	for
combinations	(valid	for	n	>	1):

n!	/	(n-2)!	×	2!

Alternatively,	this	can	also	be	expressed	as:

(n2	–	n)	/	2

You	can	see	that	there	is	an	exponential	factor	(n2)	in	this	formula,	which	will	come	to	dominate	its	scaling	as	 n	grows.
In	other	words,	the	total	number	of	connections	will	expand	much	quicker	than	the	number	of	vertices.	How	fast	will
the	edges	grow?	Let’s	look	at	some	numbers:

#	of
Vertices #	of	Edges Ratio

(E::V)

1 0 0

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 368

http://en.wikipedia.org/wiki/Complete_graph
http://betterexplained.com/articles/easy-permutations-and-combinations/

2 1 0.5

3 3 1.0

4 6 1.5

5 10 2.0

6 15 2.5

7 21 3.0

8 28 3.5

9 36 4.0

10 45 4.5

100 4,950 49.5

1,000 499,500 499.5

10,000 49,995,000 4,999.5

100,000 4,999,950,000 49,999.5

1,000,000 499,999,500,000 499,999.5

The	important	thing	to	notice	in	the	table	above	is	the	growth	in	the	 ratio	of	edges	to	vertices.	The	reason	why	this
matters	is,	in	any	networked	environment,	the	vertices	are	typically	not	equal,	nor	are	the	connections	among	them
random.	If	the	Complete	Graph	represents	the	people	working	in	a	corporation,	only	one	is	the	CEO;	if	it’s	a	network
of	roads,	there	might	be	only	a	few	streets	that	go	into	a	giant	stadium’s	parking	lot.	Therefore,	a	theoretical
understanding	of	network	effects	is	usually	paired	with	the	Pareto	Principle,	which	you	might	have	heard	as	the	“80/20
rule.”

The	economist	Vilfredo	Pareto	noticed	that	80%	of	the	land	in	Italy	was	owned	by	about	20%	of	the	population.	Pareto
surveyed	other	countries	and	noticed	a	similar	distribution	of	ownership.	Since	then,	this	same	pattern	has	been
observed	in	countless	other	contexts	from	sales	(“80%	of	sales	at	company	XYZ	comes	from	20%	of	its	customers”)	to
health	care	spending	(“20%	of	patients	consume	80%	of	healthcare	resources”).

Now,	there’s	nothing	magical	about	the	numbers	80	and	20,	they’re	just	representative	of	the	 Power	Law	distribution.
Visually,	it	looks	like	this:

The	long	tail:	whether	known	as	the	power	law,	the	Pareto	Principle,	or	the	80/20	rule,	the	distribution	of
many	naturally	occurring	phenomena	take	on	this	lopsided	form.

(image:	Husky	/	Wikimedia	Commons)

The	power	law	is	found	everywhere	in	nature*,	from	the	magnitude	of	earthquakes	to	the	size	of	craters	on	the	Moon.
When	it	comes	to	human-based	activity,	we	find	the	form	repeated	in	such	wide-ranging	contexts	as	contributors	to

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 369

http://en.wikipedia.org/wiki/Pareto_principle
http://en.wikipedia.org/wiki/Power_law
http://commons.wikimedia.org/wiki/File:Long_tail.svg
https://en.wikipedia.org/wiki/Gutenberg%25E2%2580%2593Richter_law
http://www.nature.com/srep/2013/130507/srep01783/full/srep01783.html

Wikipedia	and	the	population	of	cities.	For	my	first	“real”	job	after	college,	I	was	hired	by	a	company	called	 Alexa	to
analyze	data	on	how	people	were	using	the	Internet.	There,	I	discovered	the	power	law	by	accident:	I	remember
graphing	the	distribution	of	traffic	amongst	the	top	websites,	messing	around	with	the	scale	of	the	axes.	I	changed	them
to	logarithmic	and	suddenly	the	relationship	turned	into	a	straight	line!

I	stood	back	and	said,	“whoa.”	I	didn’t	know	what	it	meant,	but	I	thought	that	a	straight	line	was	a	bit	weird.	There	was
an	engineer	in	another	department	who	had	a	PhD	in	physics,	so	I	printed	out	the	graph	and	marched	over	to	his
office.	He	looked	at	it,	paused,	and	said	“Power	Law.	Look	it	up.”

I	did.

(*If	you’re	interested	in	learning	more	about	the	Power	Law	and	lopsided	distributions,	see	my	study	 “Tube	Of	Plenty:	Analyzing	YouTube’s
First	Decade,”	where	I	analyzed	the	metadata	of	over	10	million	YouTube	videos.)

Sorry,	but	I	don’t	have	enough	wire	to	connect	you	directly	to	everyone	else.	You’ll	have	to	go	through	the
local	exchange…

(image:	Russell	Lee	/	Library	of	Congress)

Call	Me,	Definitely

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 370

http://www.alexa.com/
https://www.youtube.com/watch?v=PkFyGNjaQ8k
https://artoftroubleshooting.com/2015/11/04/tube-of-plenty-analyzing-youtubes-first-decade/
https://en.wikipedia.org/wiki/Telephone_exchange
http://www.loc.gov/item/fsa1998000821/PP/

Before	we	get	into	the	downsides	of	interconnected	systems	(and	hence	the	need	to	troubleshoot	and	optimize	them),
we	should	first	recognize	their	immense	benefits:	being	able	to	deliver	information,	money,	fuel,	water,	electricity,
packages,	or	people	between	arbitrary	points	is	a	huge	benefit	to	humanity.	Most	of	the	stuff	that	sustains	our	lives
flows	through	networks	of	some	kind.

One	of	the	widely	cited	theories	about	why	networks	become	more	useful	as	they	grow	is	 Metcalfe’s	Law,	which	states
that	“the	value	of	a	telecommunications	network	is	proportional	to	the	square	of	the	number	of	connected	users	of	the
system.”	Metcalfe	is	the	co-inventor	of	the	ubiquitous	Ethernet	networking	standard,	which	is	the	foundation	for	most
of	the	data	networks	in	existence	today.	Some	people	have	criticized	the	way	Metcalfe’s	Law	has	been	used,	and
likewise	that	Bob	Metcalfe’s	own	formulation	and	intent	was	narrower	(after	all,	maybe	he	was	just	trying	to	get	people
to	buy	Ethernet	gear).	Also,	the	“value”	the	law	cites	isn’t	given	in	any	measurable	terms.

However,	I	think	the	underlying	principle	behind	Metcalfe’s	Law	is	easily	understood	and	useful.	Imagine	if	there	were
just	2	telephones	in	the	world:	sure,	they	would	presumably	be	useful	to	the	2	lucky	people	who	had	them,	but	it’s
nothing	compared	to	what	you	can	do	if	there	are	billions	of	phones.	You	can	order	a	pizza,	alert	someone	you’re
going	to	be	late,	book	a	hotel,	ask	out	that	good-looking	girl	or	guy,	or	get	a	taxi	to	pick	you	up.	What	you	can
accomplish	with	a	phone	increases	dramatically	when	everyone	you	want	to	communicate	with	has	one.	Plus,	each
new	phone	that	joins	the	network	makes	the	entire	system	even	more	beneficial,	allowing	more	potential	contacts	to
happen.

Other	Ways	To	Connect

There	are	also	counter-trends	that	frustrate	the	value	and	existence	of	networks	that	try	to	expand	indefinitely.	The
“value”	isn’t	the	only	thing	that	increases	with	the	number	of	interconnections:	congestion,	maintenance	costs,	fraud,
theft,	and	a	whole	host	of	other	negative	effects	are	also	likely	to	appear.	Even	though	an	“any-to-any”	concept	of	a
network	may	be	marketed	to	end-users,	scaling	becomes	its	own	challenge	because	the	actual	implementation	requires
compromises	between	connectivity	and	costs.

For	example,	my	computer	might	theoretically	be	able	to	contact	every	other	device	on	the	Internet	(just	like	the
Complete	Graph	would	suggest).	However,	there	isn’t	a	cable	going	from	my	computer	to	every	other	computer	on	the
planet:	the	Complete	Graph	has	little	to	do	with	how	the	Internet	is	actually	constructed.	This	is	because	the	Complete
Graph	is	a	very	expensive	model	to	actually	use	when	building	a	large	interconnected	system.

On	that	note,	let’s	introduce	some	of	the	more	common	topologies	that	you’ll	see	when	observing	networks	in	the
wild:

(image:	Malyszkz	/	Wikimedia	Commons)

Let’s	go	through	each	of	these	network	types,	thinking	about	how	they	solve	certain	kinds	of	problems	and	find
examples	in	the	real	world:

Ring

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 371

https://en.wikipedia.org/wiki/Metcalfe%2527s_law
https://en.wikipedia.org/wiki/Ethernet
http://blog.simeonov.com/2006/07/26/metcalfes-law-more-misunderstood-than-wrong/
http://www.independent.co.uk/life-style/gadgets-and-tech/news/there-are-officially-more-mobile-devices-than-people-in-the-world-9780518.html
https://commons.wikimedia.org/wiki/File:NetworkTopologies.svg

Pros:	each	node	has	two	options	for	egress.	Should	one	of	the	links	be	severed,	connectivity	between	nodes	is	still
possible	by	traversing	the	network	in	the	opposite	direction.
Cons:	each	node	is	part	of	the	network’s	path.	If	a	node	or	conduit	malfunctions,	the	throughput	of	the	network	is
immediately	halved	and	the	result	is	a	line	network.
Examples:	one	of	the	ISPs	I	used	for	business	had	a	ring	network	connecting	all	of	their	data	centers	in	the	Bay
Area.	If	one	of	these	connecting	links	went	offline,	data	would	continue	to	flow	around	the	ring	in	the	opposite
direction.

Mesh

Pros:	multiple	pathways	through	the	network	improves	redundancy	and	throughput.
Cons:	additional	interconnections	come	at	a	price.	Also,	because	each	node	can	potentially	be	used	as	a	conduit,
automated	smarts	are	needed	to	make	the	network	resilient	and	efficient.
Examples:	a	popular	model	for	wireless	networks,	because	adding	additional	links	between	nodes	only	requires
proximity	(i.e.,	there	are	no	cables	to	lay).	Meshes	are	harder	to	implement	for	physical	networks,	because	of	the
increased	cost.

Star

Pros:	centralized	control	and	isolation	of	nodes.
Cons:	the	center	node	is	an	obvious	point	of	congestion,	as	all	nodes	must	use	it	to	reach	any	other	point	on	the
network.
Examples:	the	hierarchical	relationship	of	employees	to	their	manager	is	a	type	of	star	network.

Fully	Connected	(aka,	“full	mesh”)

Pros:	this	model	wins	the	award	for	redundancy!	Because	every	node	is	directly	linked	to	every	other	node,	the
removal	of	one	will	have	no	impact	on	material	attempting	to	traverse	the	remaining	paths.
Cons:	expensive	to	implement,	with	exponentially	rising	costs	as	the	network	grows.	Also,	because	each	node	can
be	contacted	directly	by	all	the	others,	congestion	problems	can	show	up	at	any	node.	This	is	in	contrast	to	more
conventional	networks,	like	the	star	topology,	where	the	predictable	choke	point	can	be	strengthened.
Examples:	large,	fully	connected	networks	are	extremely	rare	in	an	industrial	context	(because	of	their	cost).
However,	you	have	direct	experience	with	them.	Most	people	belong	to	social	networks	(like	their	immediate
family	or	a	tight-knit	group	of	friends)	that	operate	like	a	fully	connected	network.

Most	pipelines	can	be	conceptualized	as	unidirectional	line	networks	(occasionally,	their	flow	is	even
reversed).

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 372

https://meraki.cisco.com/technologies/mesh-routing
http://www.reuters.com/article/us-oil-seaway-startup-idUSBRE84I0EC20120519

(image:	Carol	M.	Highsmith	/	Library	of	Congress)

Line

Pros:	like	the	ring,	every	node	can	pass	material	in	either	direction.	Also,	because	each	node	only	needs	to	be
connected	to	the	next	closest	node,	this	can	be	an	inexpensive	network	to	implement.
Cons:	every	node	needs	to	be	operational	to	pass	material	through	the	system	from	end-to-end.	Also,	because	there
is	just	a	single	path	of	flow,	the	severing	of	a	link	will	cut	the	network	in	two	parts.
Examples:	oil	pipelines.	Or,	a	particularly	hilarious	application	you	might	have	played	at	a	party:	the	 “telephone
game.”

Tree

Pros:	combines	the	star	form	with	other	topologies,	leading	to	more	manageable	clusters	of	nodes,	which	then
connect	to	other	parts	of	the	network	via	trunks.
Cons:	like	any	model	that	uses	single	links	to	connect	parts	of	the	network,	a	severed	trunk	connection	will	leave
the	network	fragmented.
Examples:	hybrids	like	the	tree	network	are	the	model	most	likely	to	be	found	in	real-world	use.	Most	organizations
that	create	their	own	networks	will	(eventually)	end	up	with	some	kind	of	tree	structure.	An	example	that
immediately	comes	to	mind	is	any	large	airline’s	route	map	(my	favorite	part	of	any	in-flight	magazine),	usually
having	several	hubs	(“spoke	and	wheel”	star	networks)	that	are	connected	by	flights	between	them	(trunks).

Bus

Pros:	this	might	be	the	cheapest	of	all	the	network	types	to	implement.	Links	only	need	to	make	it	to	the	nearest
part	of	the	shared	bus	to	connect	to	the	network.
Cons:	like	the	line	network,	a	shared	conduit	limits	throughput.	Severing	of	the	bus	at	any	point	can	leave	the
network	split	in	pieces.
Examples:	early	Ethernet	networks	using	10BASE2	technology.

What	happens	when	you	run	out	of	open	ports?	Most	network	models,	when	actually	implemented,	come
with	scalability	limits.

(image:	Andrew	Hart	/	CC	BY-SA	2.0)

Too	Many	Requests

A	large-scale	concert	on	sale	is,	in	essence,	a	denial-of-service	attack.
Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 373

https://www.loc.gov/item/2011632949/
https://en.wikipedia.org/wiki/Chinese_whispers
http://newsroom.united.com/route-maps
https://en.wikipedia.org/wiki/10BASE2
https://www.flickr.com/photos/andrewfhart/8106189987/
https://creativecommons.org/licenses/by-sa/2.0/

Andrew	Dreskin,	Ticketfly	CEO

There’s	a	downside	to	all	this	interconnectedness:	what	happens	when	 the	whole	world	shows	up	at	your	doorstep?
When	it	comes	to	scaling	networked	systems,	it	may	be	easy	to	add	a	node	by	redrawing	a	graph	on	paper,	but	your
actual	implementation	may	not	be	so	easily	adaptable.	The	process	of	taking	an	abstract	idea	about	how	a	network
should	function	and	putting	it	into	physical	form	inevitably	includes	compromises	about	capacity.	If	there	were	no
tradeoffs	or	cost,	you’d	gladly	have	your	house	plumbing	sized	to	run	a	large	waterpark,	or	your	Internet	connection
transfer	at	the	rate	of	a	gazillion	bits-per-second.	However,	capacity	isn’t	free	and	so	every	chosen	network
implementation	must	reconcile	our	infinite	desires	with	our	finite	means.

A	note	about	“troubleshooting”	network	problems:	relieving	congestion	by	adding	resources	or	changing	network
models	can	easily	cross	over	into	the	land	of	engineering	and	invention.	Recognizing	the	distinction	isn’t	a	slavish
devotion	to	semantics,	but	is	instead	about	recognizing	the	limits	of	your	equipment.	Sometimes,	a	piece	of	gear	can
be	operating	exactly	as	designed	and	still	won’t	be	able	to	handle	the	load	generated	by	the	network	to	which	it	is
attached.	In	these	cases,	the	machine	isn’t	broken,	it’s	just	being	used	in	a	context	that	isn’t	productive.	What	has	likely
changed	is	the	circumstances	surrounding	its	use	(often,	the	volume	of	stuff	being	sent	through	the	network).

The	pure	“troubleshooting”	answer	to	network	model	problems	would	be:	the	system	wasn’t	designed	for	this	level	of
usage,	so	you	should	decrease	usage.	You	may	think	this	is	an	unsatisfactory	answer,	but	this	is	actually	a	bona	fide
solution.	I’ve	seen	smart	business	owners	do	this,	refusing	work	rather	than	inviting	the	chaos	of	running	at
overcapacity.	I	always	appreciate	when	a	maître	d’	at	a	busy	restaurant	simply	turns	me	away,	rather	than	seating	me
for	a	never-ending	meal	à	la	Waiting	for	Godot.

People	do	this	in	their	personal	lives	all	the	time:	there’s	simply	a	limit	to	the	number	of	close	social	connections	you
can	maintain.	Partly,	this	is	because	maintaining	relationships	takes	the	scarce	commodity	of	time,	but	there	might	be
another	limitation:	our	minds.	Robin	Dunbar,	the	Oxford	anthropologist	and	creator	of	the	eponymous	Dunbar
number,	accurately	predicted	the	size	of	various	primate	social	groups	by	looking	at	the	size	of	their	brains.	Using	this
method,	he	then	turned	his	sights	on	us,	predicting	that	humans	would	have	social	circles	of	approximately	150
people:

The	essence	of	my	argument	has	been	that	there	is	a	cognitive	limit	to	the	number	of	individuals	with	whom	any
one	person	can	maintain	stable	relationships,	that	this	limit	is	a	direct	function	of	relative	neocortex	size,	and	that
this	in	turn	limits	group	size.

Robin	Dunbar,	Co-evolution	of	Neocortex	Size,	Group	Size	and	Language	in	Humans

These	mental	limitations	to	our	social	circles	appear	to	hold	 even	in	the	era	of	FaceBook	and	Twitter, 	with	Dunbar
noting	that	“when	you	actually	look	at	traffic	on	sites,	you	see	people	maintain	the	same	inner	circle	of	around	150
people	that	we	observe	in	the	real	world.”	While	we	may	have	to	tacitly	accept	these	limitations	in	our	social	lives,	the
profit	motive	and	the	desire	to	constantly	reach	for	new	heights	makes	us	rarely	satisfied	with	the	troubleshooting
answer	of	“do	less”	in	other	contexts.	For	a	business	owner,	it	will	gnaw	away	at	you	knowing	that	there	is	business	out
there	that	you	can’t	satisfy.	This	compulsion	drives	us	to	grow	our	networked	systems	by	swapping	out	the	underlying
model	with	something	more	suitable.

To	prime	our	thinking	about	scaling	networks,	a	good	place	to	start	is	with	the	 public	switched	telephone	network.
Let’s	consider	the	Central	Office,	a	building	block	of	the	phone	system	(still	in	use):	this	is	the	physical	place	where	all
the	phone	lines	in	a	locality	are	terminated.	There	are	practical	limits	to	the	length	of	phone	cables,	both	because	of
the	signal	degradation	that	sets	in	over	longer	distances,	as	well	as	the	expense	of	stringing	them	along	poles	or
through	underground	conduits.

Therefore,	you’d	expect	that	the	size	of	a	typical	Central	Office	(CO)	would	be	limited	by	these	geographical	and
economic	constraints.	You’re	not	going	to	be	able	to	have	a	single	CO	for	a	whole	country	(except	for	maybe	Monaco
or	the	Vatican).	If	you	were	laying	out	a	new	city,	you’d	need	to	plan	to	have	a	certain	number	of	these	facilities:	X
number	of	COs	per	Y	square	miles	of	land.	You	can	also	predict	that	the	type	of	equipment	deployed	in	a	CO	would

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 374

http://www.wired.com/2010/11/mf_ticketmaster/
https://www.youtube.com/watch?v=4phbv5Xg9is
https://www.noahsarkwaterpark.com/
https://artoftroubleshooting.com/2015/04/03/theres-a-fine-line-between-engineering-invention-and-troubleshooting/
https://en.wikipedia.org/wiki/Waiting_for_Godot
https://en.wikipedia.org/wiki/Dunbar%2527s_number
http://www.uvm.edu/~pdodds/files/papers/others/1993/dunbar1993a.pdf
http://www.wired.co.uk/news/archive/2010-01/25/forget-facebook-friend-limits-brains-can-only-manage-150-friends
https://en.wikipedia.org/wiki/Public_switched_telephone_network
https://en.wikipedia.org/wiki/Telephone_exchange

be	of	a	certain	scale,	designed	perhaps	for	thousands,	but	certainly	not	millions	of	incoming	lines.	Why?	Again,
economics.	The	industry	will	consolidate	around	certain	implementations	and	designers	will	take	advantage	of	these
economies	of	scale.	Put	another	way,	if	everyone	else	is	building	COs	of	a	certain	size	because	the	available
equipment	favors	it,	then	you	will	too.

While	many	systems	use	the	abstract	network	models	shown	above,	seemingly	flexible	and	conducive	to	scaling	to
any	number	of	nodes,	their	in-the-flesh	implementations	will	typically	only	function	within	a	fairly	narrow	ratio	of
edges	to	vertices.	The	problem	is	that	networked	systems	are	deployed	in	contexts	that	are	ever-changing:	the	ebb	and
flow	of	businesses,	organizations,	families,	cities,	and	states.

Scaling	Inside	The	Existing	System

To	understand	the	scaling	of	networked	systems,	let’s	start	with	the	low-hanging	fruit	of	their	built-in	capacities.	Think
of	a	simple	electrical	power	strip	with,	let’s	say,	6	outlets:

(image:	Malvineous,	license:	CC	BY-SA	3.0)

Conceptually,	when	you	plug	devices	into	a	power	strip	you	form	a	star	network.	Plugging	in	the	power	strip	itself	then
creates	a	tree	network.	The	scalability	is	built-in,	yet	limited:	1	to	6	devices	can	be	attached	to	this	particular	power
strip.	Let’s	say	you	buy	one	and	plug	in	your	laptop,	monitor,	printer,	scanner,	modem,	and	router.	It’s	a	full	house!

Then,	you	go	on	a	shopping	spree	and	buy	a	stereo	and	a	space	heater.	Hmm…you	can	see	this	presents	a	problem.
Previously,	we	made	a	choice	that	lead	to	a	purchase	and	the	result	was	a	fixed	amount	of	scalability.	Even	though	a
power	strip	might	be	a	star	network	in	the	abstract,	you	can’t	just	draw	lines	and	magically	have	more	outlets	appear.
Maybe	you	buy	a	second	power	strip,	raising	your	office	capacity	to	12	outlets.	That’s	great,	but	this	method	of	scaling
can’t	continue	indefinitely.	The	power	strips	themselves	are	plugged	into	a	circuit	that	has	a	fixed	capacity.

From	this	simple	example,	you	can	see	that	networked	systems,	when	actually	implemented,	will	have	these	 scaling
thresholds	(or	“cliffs,”	should	you	be	pushed	over	them).	There	will	usually	be	a	range	within	which	it’s	easy	to	scale,
but	after	that	it	will	require	more	resources.	Beyond	that,	you	will	eventually	come	to	another	breaking	point	where
adding	more	of	the	same	will	not	be	enough	to	increase	capacity.	At	that	point,	you’ll	need	to	rethink	the	underlying
model.

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 375

https://commons.wikimedia.org/wiki/File:Australian_switched_powerboard.jpg
https://creativecommons.org/licenses/by-sa/3.0/deed.en
https://artoftroubleshooting.com/2013/03/22/dedicated-and-shared-resources/

Within	small	teams,	perhaps	you	can	meaningfully	keep	up	with	everybody…
(image:	Library	of	Congress)

Scaling	Outside	The	Existing	System

Human-based	organizations	are	a	great	example	of	how	network	models	need	to	be	discarded	and	remade,	especially
during	a	period	of	growth	(or	decline,	as	the	case	may	be).	What	works	for	a	solo	enterprise	will	not	work	for	10
people,	what	works	for	10	people	won’t	work	for	100,	what	works	for	100	people	won’t	work	for	1,000,	and	so	on.	I’m
not	saying	that	the	network	model	exhaustively	explains	every	reason	why,	but	it	is	a	powerful	framing	of	the	problem.

For	very	small	groups,	it	may	be	possible	to	have	a	“fully-meshed”	network	model.	Think	of	a	small	business,	like	the
auto	repair	shop	my	Grandfather	used	to	run.	It	was	just	he	and	a	partner.	With	only	a	few	people	working	together,
it’s	definitely	possible	for	everyone	to	interact	with	everyone	else.	If	you	share	the	same	physical	workspace,	you	can
be	privy	to	the	same	information	and	develop	a	meaningful	personal	relationship	with	everybody	(and	they	with	you),
approaching	the	ideal	of	the	fully-connected	network	envisioned	in	the	Complete	Graph	model.

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 376

https://www.loc.gov/item/ggb2004008845/

…but	definitely	not	within	large	groups.
(image:	Library	of	Congress)

A	fancy	piece	of	new	equipment	glistens	in	the	sunshine.	You	may	bask	in	all	of	its	chrome-reflected	glory.	But,	no
matter	how	many	rays	are	reflected,	its	capacity	is	finite.	It’s	also	likely	to	be	explicitly	stated,	usually	somewhere	in	the
manual	(albeit	in	the	small	print).	While	these	technical	limitations	are	known	and	respected,	our	human	ones	are
frequently	disregarded	(to	our	detriment).

For	the	sake	of	productivity	(and	everybody’s	sanity),	as	a	firm	adds	people	it’s	a	crucial	task	to	migrate	to	a	structure
that	limits	interactions	between	the	parts	of	your	organization’s	network.	The	reason	why	is	plain:	our	time	and	ability
to	focus	is	scarce.	Imagine	if	you,	a	lone	person,	had	to	keep	up	with	all	the	employee-to-employee	interactions	inside
a	group	of	millions,	as	in	a	mega-corporation	like	Walmart	or	McDonald’s.	It	simply	wouldn’t	be	possible.	It	would	be
boring	too.	Like,	really	boring.

Isolation	may	sound	like	a	bad	word,	but	when	it	comes	to	your	job	it’s	an	absolute	necessity	for	you	to	get	anything
done.	This	is	one	reason	why	companies	create	barriers	of	all	sorts,	from	the	physical	(e.g.,	offices	and	cubicles)	to	the
hierarchal	(e.g.,	you	can	only	access	a	particular	person	through	their	boss	or	secretary)	to	the	procedural.	Along	the
lines	of	this	last	category,	I	present	the	form:

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 377

https://www.loc.gov/item/fsa1998024306/PP/
http://tvtropes.org/pmwiki/pmwiki.php/Main/ReadTheFinePrint

You	may	hate	them	(yeah…did	you	see	the	memo?),	but	forms	are	an	essential	part	of	standardizing	and
limiting	interactions	between	parts	of	an	organization’s	network.

(image:	Don	Meyers	/	CC	BY-SA	3.0)

The	very	low-tech	form	is	an	example	of	using	procedures	to	standardize	how	parts	of	an	organizational	network
interact	with	one	another.	I’m	not	sure	who	invented	the	form,	the	kind	which	needs	to	be	filled	out	in	triplicate,	but	if
they	didn’t	someone	else	would	have.	Before	the	venerable	form	appeared,	people	were	getting	requests	verbally,
scrawled	on	post-it	notes,	via	emails,	voicemails,	smoke	signals,	in	skywriting	and	interpretive	dance.	Having	other
things	to	do,	all	this	free-form	access	from	other	parts	of	the	organizational	network	probably	got	a	bit	tedious.	Then
the	clouds	parted	and	the	form	appeared.	Even	though	the	entire	group	may	contact	a	single	employee,	those	little
lines	provide	protection	when	they	do.

I’m	not	promoting	any	particular	management	structure	(flat,	functional,	product,	geographical,	etc.),	because	isolation,
hierarchies,	and	procedures	each	have	their	own	problems.	Further,	implementing	a	particular	system	will	also
generate	a	host	of	unintended	consequences:	the	end	result	may	be	superior,	but	that	doesn’t	mean	that	customers,
vendors,	and	employees	will	all	simultaneously	be	better	off.	However,	you	need	to	be	sympathetic	to	the	underlying

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 378

https://www.youtube.com/watch?v=jsLUidiYm0w
https://en.wikipedia.org/wiki/File:Tps_report.png
http://creativecommons.org/licenses/by-sa/3.0/
http://smallbusiness.chron.com/types-organizational-structure-management-2790.html

argument	for	the	existence	and	pursuit	of	these	competing	organizational	systems:	the	limiting	of	unwanted	network
effects.

Growth	will	present	scaling	problems	to	your	networks	(both	human	and	machine),	exposing	unsustainable
relationships	between	edges	and	vertices.	Just	like	our	power	strip,	it	may	be	possible	to	scale	within	the	existing
system.	A	single	manager	may	well	be	able	to	increase	his	subordinates	from	2	to	3,	and	again	from	3	to	4.	A	router
might	be	able	to	switch	1,000	mb/s	of	traffic	just	as	well	as	1	mb/s.	However,	there	will	come	a	time	when	the	old
ways	of	scaling	will	no	longer	be	possible	and	you	must	change	your	network	model.

There	may	be	a	lot	of	connections	here,	but	don’t	be	fooled	into	thinking	that	the	capacity	is	infinite…
(image:	Russell	Lee	/	Library	of	Congress)

The	Physics	Of	The	Network

Any	time	you	centralize	something,	whether	it	be	information,	decision-making,	or	physical	goods,	there	are	going	to
be	tradeoffs.	As	networks	are	often	the	means	by	which	these	things	are	concentrated,	we	should	look	at	their	role	in
these	schemes	and	discuss	the	pros	and	cons	of	bringing	things	together.

When	you	move	stuff	around	a	network,	you	lose	its	original	context.	This	becomes	a	problem	for	the	transfer	of
information,	especially	the	kind	that	is	used	to	coordinate	the	actions	of	individuals	within	a	group.	If	you’re	a	lowly
army	corporal	standing	in	the	general’s	office	and	he	gives	you	an	order,	several	important	things	are	quite	clear:	you
know	the	general	is	speaking	to	you	and	the	general	knows	with	whom	he’s	speaking.	If	you’re	brave	enough,	you	can
even	ask	for	clarification.

But,	let’s	say	you	are	that	same	corporal,	thousands	of	miles	of	away	in	the	middle	of	a	heated	battle,	and	someone
hands	you	a	piece	of	paper	telling	you	what	to	do.	At	the	bottom	is	the	general’s	name…but	how	do	you	know	it	came
from	him?	Has	the	order	been	changed	or	delayed	along	its	path?	You	can	see	that	by	removing	context,	networks
present	problems	of	trust	and	identity.

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 379

http://www.loc.gov/item/fsa2000011398/PP/

They’re	fine	sitting	in	the	parking	lot,	but	what	happens	when	they	all	want	to	get	on	the	road?
(image:	John	Vachon	/	Library	of	Congress)

Another	interesting	aspect	of	networks	is	that	their	capacities	are	often	small	in	relation	to	the	type	of	material	they
transmit.	This	is	because	it’s	(relatively)	expensive	to	move	things	around.	Walking	around	San	Francisco,	I’ll	often	see
a	crowded	street	with	cars	taking	up	every	possible	bit	of	free	space	along	the	curb.	I’ve	wondered:	“What	would
happen	if	everyone	decided	to	use	their	car	at	the	same	time?”	The	capacity	of	our	roadways	is	small	compared	to	the
number	of	cars	in	existence.	To	the	extent	they	are	usable	in	a	crowded	urbanity,	we	rely	upon	the	vast	majority	of	cars
not	being	in	use!	Whatever	medium	you	can	think	of	(oil,	information,	cars),	their	corresponding	networks	(pipelines,
the	Internet,	roads)	will	only	be	able	to	transmit	a	small	fraction	of	the	available	material	at	one	time.

When	it	comes	to	the	movement	of	information	on	a	network,	in	addition	to	any	context	that	might	be	lost,	an
abbreviation	must	also	take	place.	This	has	always	been	true:	imagine	that	you	were	the	commander	of	a	far-flung
outpost	like	Vindolanda,	sitting	on	the	edge	of	the	Roman	Empire’s	frontier	by	Hadrian’s	Wall.	One	day,	you	get	a
request	from	your	superiors	asking	you	for	a	report	of	the	goings-on	over	the	last	year.	There	are	nearly	an	infinite
number	of	things	you	could	include	in	your	reply:	enemy	incursions,	movements	of	troops	in	and	out	of	the	fort,	levels
of	supplies,	agricultural	output,	temperature,	rainfall,	births,	deaths,	disputes,	details	of	social	occasions,	or	the	latest
gossip	about	Agrippina	and	Plinius	(they	were	seen	kissing	behind	the	Thermae!).	But,	those	wooden	tablets	aren’t
exactly	easy	to	write	on,	plus	the	courier	only	has	room	for	one	in	his	pouch	and	he’s	leaving	in	15	minutes.	So,	you
just	scribble	the	following:	“We’re	all	fine.	Still	alive.	Send	wine.”

Funnily	enough,	that’s	probably	all	they	could	reasonably	handle	within	the	busy	context	of	running	a	large	empire.	As
a	general	rule,	the	nodes	on	the	edge	of	a	network	can	produce	much	more	data	than	can	be	transferred,	analyzed,
and	acted	upon.	There	is	an	infinite	amount	to	be	measured	within	the	simplest	of	systems	and	so,	any	time	you	collect
data,	you	are	gathering	only	a	tiny	fraction	of	what	can	be	known	(see	“Is	This	Normal?”	for	more).	Because	of	the
expense	of	preparing	the	data	and	then	moving	it,	centralizing	information	usually	involves	a	further	culling.	The	core
can’t	know	everything	about	the	edges,	and	the	edges	can’t	know	everything	about	themselves.

Lastly,	we	should	note	that	centralization	(via	networks)	is	often	pursued	as	a	measure	of	control.	Whatever	it	is	you’re
trying	to	protect	(information,	resources,	etc.),	the	theory	is	that	it	will	be	easier	to	do	so	when	it’s	all	in	one	place.	The
adage	“don’t	put	all	your	eggs	in	one	basket”	neatly	summarizes	the	potential	downside	of	concentrating	important
things.

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 380

https://www.loc.gov/item/fsa1998005142/PP/
https://en.wikipedia.org/wiki/Vindolanda
https://artoftroubleshooting.com/2012/04/10/is-this-normal-an-ode-to-data-collection/

Let’s	make	some	new	connections.
(image:	btphotosbduk	/	CC	BY	2.0)

Breaking	And	Making	New	Connections:	Reforming	Congested	Networks

Whether	we’re	talking	about	Dunbar’s	Number	or	the	availability	of	open	ports	in	a	telephone	switch,	the	common
theme	for	system	builders	is:	be	aware	of	the	scalability	thresholds	that	limit	the	size	of	the	networks	under	your	care
(and	of	which	you	are	a	part).	When	the	easy	options	for	expansion	have	been	exhausted,	here	are	some	basic
strategies	for	mitigating	network	problems:

Augment

This	is	the	most	obvious	path	to	increase	your	network’s	capacity	and,	because	it’s	along	the	lines	of	what	you	already
know,	will	be	the	most	tempting.	If	your	Internet	router	is	overloaded,	you	can	buy	one	with	more	capacity.	If	a	4-lane
highway	is	constantly	jammed,	you	could	widen	it	to	12	lanes.	Whatever	your	network	currently	does,	you	can
imagine	replacing	the	component	parts	with	ones	that	simply	do	more.

Prioritize

A	network	is	a	finite	resource,	so	you	should	ask	yourself	if	it	is	being	used	for	the	most	urgent	or	valuable	purpose.	If	a
network	is	being	utilized	by	customers,	maybe	you	need	to	raise	prices	to	bring	usage	under	control.	Toll	roads	are	an
easy	to	understand	scheme	that	reduce	congestion	by	giving	access	to	those	who	value	it	most.	It	doesn’t	have	to	be
about	the	bottom	line:	whatever	your	organization	deems	important,	you	want	to	make	sure	that	your	networks	are
similarly	aligned.

Re-model

This	is	where	you	alter	the	network	model,	adopting	a	new	form	that	changes	how	the	various	nodes	connect	to	each
other.	Modifying	the	ratio	of	edges	to	vertices	can	go	in	either	direction:	congestion	may	lead	you	to	seek	ways	to
lower	this	number,	but	efficiencies	can	allow	you	to	raise	it	too.	Consider	an	overloaded	manager,	connected	to
subordinates	in	a	typical	star	network:	a	common	strategy	is	to	split	up	teams	that	are	too	large,	appointing	additional
leadership	for	the	new	groups,	lowering	the	ratio	between	employees	and	managers	(effectively	creating	a	tree	network
in	place	of	the	former	star	shape).	You	can	also	imagine	this	going	the	other	way:	maybe	a	new	HR	system	automates
many	of	the	tasks	that	used	to	burden	a	particular	manager	(scheduling,	reporting,	etc.),	leading	to	an	increase	in	the
number	of	employees	under	their	direction.

Isolation	and	exposure	are	two	more	opposing	themes	that	can	drive	the	remodeling	of	your	networks.	We’ve	talked

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 381

https://www.flickr.com/photos/107803477@N08/14060041062/
https://creativecommons.org/licenses/by/2.0/
http://freakonomics.com/2009/01/06/why-youll-love-paying-for-roads-that-used-to-be-free-a-guest-post/

about	the	need	to	limit	access	to	nodes,	especially	when	the	context	is	an	organization.	There	simply	aren’t	enough
hours	in	the	day	for	the	CEO	of	a	mega-corporation	to	be	continually	and	directly	accessed	by	everyone	who	works
there.	Even	when	you’re	not	the	CEO,	you	probably	have	appreciated	those	jobs	where	you	were	left	alone	to	focus	on
getting	things	done.	Devolutions	done	in	the	name	of	isolation	can	transform	star	networks	into	trees,	pushing	nodes
further	away	from	the	core.

Network	reformations	can	also	promote	the	opposite,	exposing	previously	hidden	nodes	by	 increasing	access	to	them.
Maybe	Bob	from	accounting	is	a	little	too	reclusive,	so	you	publish	his	telephone	extension	and	office	number	in	the
employee	newsletter.	In	computing,	wireless	mesh	networks	attempt	to	promote	connectivity	between	nodes	by
allowing	information	to	flow	freely	among	them.	Tear	down	those	walls!

Not	designed	to	work	efficiently	with	20-ton	boulders.
(image:	Russell	Lee	/	Library	of	Congress)

Standardize/Limit

Within	a	network,	a	way	to	preserve	connectivity	and	reduce	congestion	is	to	enforce	rules	about	 how	nodes	connect
to	each	other.	Remember	the	mighty	fill-in	form:	it	all	comes	back	to	this	idea	of	giving	relief	to	overloaded	nodes	by
placing	restrictions	on	how	others	can	connect	to	them.	Standards	for	inputs	ensure	that	a	given	node	can	process
material	in	the	most	efficient	manner.	Another	way	to	ensure	a	node	can	operate	efficiently	is	to	place	limits	on	the
rate	it	receives	materials	or	instructions	from	elsewhere	in	the	network.

Be	Flexible

Network	forms,	along	with	their	physical	manifestations	that	we	actually	use	to	do	work,	all	have	a	proper	scale	in
which	they	can	be	used.	A	network’s	context	is	constantly	shifting	within	the	ups	and	downs	of	your	life	and	business.
One	model	cannot	satisfy	your	needs	forever,	so	a	fluid	mindset	regarding	their	use	is	paramount.

References:

Header	image:	Trikosko,	M.	S.,	photographer.	(1959)	Women	working	at	the	U.S.	Capitol	switchboard,
Washington,	D.C.	Washington	D.C,	1959.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2013651433/.
The	images	of	complete	graphs	used	in	this	article	are	from	the	public	domain	collection	on	Wikimedia	Commons
(“Set	of	complete	graphs”).

Network	Effects	was	originally	published	April	11,	2016.

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 382

https://en.wikipedia.org/wiki/Mesh_networking
https://www.youtube.com/watch?v=YtYdjbpBk6A
https://www.loc.gov/item/fsa1997022458/PP/
https://www.loc.gov/item/2013651433/
https://commons.wikimedia.org/wiki/Category:Set_of_complete_graphs;_Complete_graph_Kn.svg_(blue)

Notes:

Network	Effects	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 383

On	Selfies	And	Showboating:	Troubleshooting	The
Imminent	Dangers	Of	“Look	At	Me!”

He	who	tries	to	shine
dims	his	own	light.

Tao	Te	Ching	(verse	24)	1

A	tourist	steps	closer	and	closer	to	a	steep	cliff,	obsessively	searching	for	that	perfect	selfie.	A	group	of	teenagers,	trying
to	impress	each	other,	jump	off	a	bridge	into	a	fast-flowing	river.	Drivers	slow	to	look	at	a	wreck	by	the	side	of	the
road,	taking	their	eye	off	of	the	road.

Whether	we’re	trying	to	generate	attention,	or	giving	that	attention	to	others,	it	can	distract	us	from	reading	the	dangers
of	our	current	context.	Humans	are	social	animals,	so	it’s	no	surprise	that	group	recognition	is	important;	however,
when	this	desire	is	mixed	with	an	unforgiving	natural	world	and	the	complexities	of	machines,	we	can	pay	a	dear	price
for	the	pursuit	of	consideration	from	our	peers.

The	modern	systems,	simple	and	complex,	that	we	use	to	accomplish	our	goals	are	a	 combination	of	man	and
machine.	There	is	no	separation:	humans	are	involved	at	all	levels.	We	determine	their	need,	design,	manufacture,
purchase,	installation,	maintenance,	and	use:	that	unique	combination	of	personnel	and	machinery	employed	to	get	a
task	done.	Therefore,	it	shouldn’t	be	a	surprise	that	a	human	imprint	can	be	found	in	the	failure	patterns	of	these
systems	too:	social	effects	are	omnipresent	in	malfunctions	at	all	scales.

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 384

The	bar	for	selfies	was	raised	to	impossible	heights	 by	Buzz	Aldrin	in	1966.
(image:	NASA	/	Wikimedia	Commons)

This	is	all	getting	a	bit	serious,	so	now	is	probably	a	good	time	to	bring	up	a	reality	TV	show.	Recently,	I	was	binge-
watching	Bondi	Rescue,	a	series	about	the	lifeguards	who	work	at	Bondi	Beach	in	Sydney,	Australia.	In	the	midst	of	my
TV	marathon,	I	saw	something	that	brought	together	the	many	strands	of	the	“Look	at	me!”	factor	that	have	been
floating	around	in	my	head.

I’m	fascinated	by	things	going	wrong—I	suppose	that	is	why	I’ve	written	so	much	about	troubleshooting.	Whenever	an
accident	happens	in	my	life,	whether	at	home	or	work,	I	like	to	mull	it	over	in	my	head.	This	is	the	most	satisfying	last
step	of	any	troubleshooting	exercise,	learning	from	the	failure	and	trying	to	prevent	it	from	happening	again.

First,	let	me	set	the	scene:	Bondi	Rescue	has	held	my	attention	over	many	episodes	because	it’s	a	perfect	cocktail	of
dramatic	elements.	For	starters,	the	location	of	Bondi	Beach	is	very	close	to	the	sprawling	metropolis	of	Sydney	and	its
amazing	beach	weather.	This	proximity	means	a	never-ending	stream	of	unwitting	tourists,	many	of	whom	seem	to	be
getting	acquainted	with	the	ocean	for	the	first	time.	Bondi’s	shoreline	isn’t	a	shallow	kiddie	pool:	there	are	often	big
waves,	dangerous	currents	which	shift	with	the	tides,	and	sharp	rocks	bookending	the	sides	of	this	beautiful	crescent-
shaped	beach.	Add	to	the	mix	alcohol,	massive	crowds,	and	the	group	dynamics	of	protests,	parties,	classes,	baptisms,
etc.	and	it’s	a	recipe	for	non-stop	drama.	Kudos	to	the	creators	of	the	show,	who	likely	recognized	the	setting	as	the
basis	for	a	successful	and	predictable	TV	formula:	the	longevity	of	13	seasons	speaks	for	itself.

In	Season	11,	Episode	11	of	Bondi	Rescue	there	is	an	incident	which	I	think	perfectly	encapsulates	the	dangers	of	the
“Look	at	me!”	instinct.	The	setup	is	simple:	two	students	from	the	USA	go	swimming	near	Backpackers’	Rip	with	a
GoPro	camera,	mounted	on	a	selfie	stick.	What	could	go	wrong?	If	you’re	a	fan	of	Bondi	Rescue,	what	happens	next	is
predictable:	the	tourists,	unaware	of	the	dangers	present,	get	caught	in	a	riptide	and	are	carried	away	from	the	shore.
Luckily,	the	Bondi	lifeguards	recognize	the	peril	of	the	situation	and	intervene.

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 385

https://en.wikipedia.org/wiki/Space_selfie
https://commons.wikimedia.org/wiki/File:Buzz_Aldrin_self-photograph_during_Gemini_12_EVA_(S66-62926).jpg
https://www.netflix.com/title/80221999
https://artoftroubleshooting.com/cleaning-up/
https://en.wikipedia.org/wiki/Bondi_Beach

The	essential	difference	between	an	accident	and	a	near	miss	is	often	difficult	to	pinpoint.	I’ve	been	in	 seemingly
identical	situations	where	others	have	gotten	hurt	and	I	have	been	spared,	and	I	have	gotten	hurt	in	circumstances
where	others	have	walked	away	unscathed.	We	can	speculate	on	the	possible	“outs”	that	weren’t	taken	and	the
compounding	circumstances	present	in	this	case.	You	could	start	with	the	failure	to	tap	into	the	local	knowledge	about
known	hazards.	For	example,	having	a	chat	with	the	lifeguards	about	your	intentions	and	getting	their	feedback.	Or,
simply	noting	the	red	and	yellow	flags	that	mark	the	safe	swimming	area	on	Bondi	Beach.	Unfortunately	for	those
seeking	fame,	taking	these	preventative	steps	makes	it	unlikely	that	you’ll	be	included	in	an	episode	(alas,	staying	alive
does	have	its	downsides).	Maybe	they	could	have	been	better	prepared	by	being	stronger	swimmers:	perhaps	an
olympic-class	athlete	could	swim	one-handed,	with	a	camera,	against	a	riptide,	and	have	more	than	enough	breath	to
give	an	Oscar-worthy	monologue.	Another	factor	might	be	the	seemingly	innocuous	presence	of	a	friend.	People	have
been	known	to	take	more	risks	when	in	groups.

We	could	go	much	further,	analyzing	the	factors	present	and	chances	for	prevention	in	this	 Bondi	Rescue	incident.
Instead,	I	want	to	connect	it	to	the	troubleshooting	arts	by	focusing	on	one	important	factor:	the	presence	of	a	camera.
For	better	or	worse,	people	act	differently	when	a	camera	is	around.	After	the	tourists	have	been	rescued,	lifeguard
Jesse	Polock	succinctly	sums	up	what	happened:	“GoPros	and	rips	don’t	mix…	You	can	film	yourself	drowning,	but
that’s	about	it.”

Check	out	the	fine	feathers.	Attention-seeking	isn’t	just	for	humans…
(image:	Library	of	Congress)

“Say	Cheese!”

In	a	dangerous	situation,	like	swimming	in	a	riptide,	the	insidious	thing	about	a	camera	is	that	it	competes	for	a
precious	resource:	your	awareness.	Whether	a	menace	is	looming	or	fully	actualized,	awareness	precedes	corrective
action.	But,	if	your	attention	is	focused	on	getting	the	best	angle	for	your	adoring	followers,	it	can’t	also	be	used	to	see
an	imminent	threat.	Mugging	for	the	camera	is	a	distraction	that	will	inevitably	delay	the	recognition	of	critical	facts,
like	a	steady	drift	away	from	the	shore.

That	tradeoff	might	seem	obvious,	but	there	was	another	unexpected	effect	caused	by	a	camera’s	presence	on	that
episode	of	Bondi	Rescue.	Namely,	the	person	was	determined	to	hold	on	to	the	selfie	stick	to	which	it	was	attached,
even	though	they	must	have	sensed	that	they	were	in	danger!	In	the	segment,	Bondi	lifeguard	Corey	Oliver	explicitly
makes	the	connection	between	the	close	call	and	the	presence	of	the	camera:	“I	guess	when	you’ve	got	an	expensive
little	toy	in	your	hand	that	you	don’t	want	to	lose,	it’s	going	to	make	it	a	lot	harder	to	swim	with	one	hand.	So,	we	get	a
lot	of	problems	with	people	trying	to	swim	one-handed	and	not	getting	back	to	the	beach.”

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 386

https://beachsafe.org.au/surf-safety/flags-and-signs
http://review.chicagobooth.edu/magazine/spring-2015/one-reason-groups-fail-polarization
https://www.loc.gov/item/2016884875/

This	phenomenon	appeared	many	times	in	the	episodes	of	Bondi	Rescue	that	I	watched:	people	clinging	to	sunglasses,
cameras,	phones,	toys,	surf	and	boogie	boards,	etc.,	all	while	battling	for	their	lives	in	the	pounding	surf.	I	guess	they
really	really	want	their	deposit	back	at	the	rental	shop.	The	problem	is	that,	when	you’re	holding	onto	a	precious	item
with	one	hand,	you	are	severely	handicapping	your	chances	at	a	self-rescue.	When	the	chances	for	survival	narrow,
desperately	grasping	a	selfie	stick	isn’t	just	a	mental	impediment,	but	a	physical	one	too.	It’s	much	harder	to	save
yourself	when	one	hand	is	occupied	and	can’t	be	used	for	swimming.	If	ever	there	was	an	example	of	narcissism
literally	killing	us,	this	is	it!

Salvage	what	you	can,	even	if	it’s	just	the	publicity	value.	If	you	ever	get	to	a	point	like	this,	please	take	a
photo	or	two.	Posterity	will	thank	you!
(image:	William	H.	Case	/	Library	of	Congress)

Look	at	me—running	into	this	reef

There’s	no	shortage	of	accidents,	famous	and	 obscure,	that	have	a	“Look	at	me!”	component.	A	recent	and	major	one
that	instantly	came	to	mind	when	I	began	writing	this	article	was	the	Costa	Concordia	disaster.	You	probably	saw	this
event	heavily	covered	on	the	news	in	2012.	The	gist	is	that	a	massive	cruise	ship,	carrying	over	4,000	people,	ran	into
a	reef	in	the	Mediterranean	Sea	off	the	coast	of	Italy.	The	collision	ripped	a	massive	hole	in	the	boat’s	hull	and
eventually	sunk	the	Costa	Concordia,	resulting	in	32	deaths.

As	the	details	of	the	disaster	were	reported,	perhaps	the	most	puzzling	detail	(for	me)	was	the	ship’s	very
close	proximity	to	Giglio	Island	when	it	ran	aground.	Reading	about	Giglio	Island,	you	find	that	it’s	a	natural	feature
that	formed	millions	of	years	ago,	and	has	been	occupied	by	humans	since	the	Stone	Age.	Plenty	of	time	for	word	of	its
existence	to	get	around.	Plenty	of	time	for	it	to	appear	on	nautical	charts.	Why	was	the	Concordia	cruising	so	close	to
a	known	hazard?

The	answer	is:	getting	close	to	Giglio	Island	was	 intentional.	The	Concordia	was	doing	a	sail-by	salute	for	the	residents
of	the	island.	This	navigational	diversion,	executed	exclusively	for	the	visual	and	ceremonial	pleasure	of	those	on	the
ship	and	for	those	on	land,	is	the	very	definition	of	a	“Look	at	me!”	stunt.	Whether	this	particular	salute	was	authorized
seems	to	be	a	contested	matter.	However,	it	was	easy	to	uncover	the	numerous	forces	pushing	for	the	sail-by.	For
starters,	consumers	(i.e.,	the	passengers)	seem	to	expect	jaunts	like	these:

In	the	days	after	the	disaster	Costa	Cruises	chairman	and	CEO	Pierluigi	Foschi	told	an	Italian	parliamentary
committee	that	sail	by	salutes	do	happen	with	the	approval	of	cruise	lines.

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 387

https://www.loc.gov/item/99614477/
http://knowyourmeme.com/memes/hold-my-beer
https://en.wikipedia.org/wiki/Costa_Concordia_disaster
https://en.wikipedia.org/wiki/Isola_del_Giglio
https://en.wikipedia.org/wiki/Sail-by_salute
https://www.scotsman.com/news/transport/cruise-ship-sinking-costa-chiefs-insisted-on-traditional-sail-by-salute-claims-captain-1-2072112

He	defended	the	practice	of	what	he	called	“tourist	navigations”	and	added:	“It’s	something	that	enriches	the
cruise	product.	There	are	many	components	of	the	cruise	product	and	we	have	to	do	them	like	everyone	else
because	we	are	in	a	global	competition.”

“Calls	for	cruise	ship	‘sail	by	salutes’	to	resume	after	Costa	Concordia	tragedy” ,	The	Telegraph,	May	6,	2012

A	tour	operator	like	Costa	Cruises	probably	appreciates	the	free	publicity	that	a	(safe)	sail-by	offers:	when	a	massive
cruise	ship	passes	within	sight	of	a	population	center,	it	becomes	a	giant	floating	billboard.	Unless	they	agree
with	David	Foster	Wallace’s	sardonic	stance	on	cruising	(“…any	fool	knows	that	Dr.	Pepper	is	no	substitute	for	Mr.
Pibb,	and	it’s	an	absolute	goddamned	travesty…”),	they’re	more	likely	to	pick	up	the	phone	and	book	a	trip	after	such
an	encounter.

But	the	“Look	at	me!”	factors	of	the	Costa	Concordia	disaster	go	beyond	the	obvious	commercial	compulsions.	They
kept	appearing	as	I	read	more	about	the	circumstances	of	the	tragedy.	For	instance,	the	island’s	residents	and	the
mayor	of	Giglio	really	liked	these	sail-bys	too.	“Tourists	and	locals	gather	on	the	jetty	to	see	the	ships	go	by…it’s	a
great	sight,”	said	the	mayor	of	the	island	town	of	Giglio.	Give	those	visitors	a	spectacle,	maybe	they’ll	talk	about	it	on
social	media.	“Look	at	me!”	and	“Give	me	something	to	look	at!”	are	counterparts;	exhibitionists	and	voyeurs	need
each	other.

Further,	I	was	also	surprised	to	find	in	the	news	reports	that	there	were	a	number	of	by-standers	on	the	ship’s	bridge
during	the	accident.	One	of	these	spectators	was	the	head	waiter	(maître	d’hôtel,	if	you’re	feeling	Frenchy)	Antonello
Tievoli,	who	was	invited	up	to	the	bridge	for	the	sail-by.	Tievoli	was	a	Giglio	native	and	his	 sister	and	parents,
residents	of	the	island,	knew	the	Concordia	would	be	passing	near.	Likewise,	the	Captain’s	lover	was	on	the
bridge	during	the	crash.	It’s	reasonable	to	wonder	about	the	effects,	subtle	or	overt,	of	these	voyeurs	on	the	Captain’s
attention	and	choices.	For	prudence’s	sake,	the	bridge	on	a	cruise	ship	is	typically	off-limits	to	passengers,	especially
during	complex	maneuvering	(like	docking)	when	focus	and	intra-crew	communication	is	critical.	Did	the	presence	of
these	spectators	put	pressure	on	the	Captain	to	do	something	“impressive,”	“special,”	or	“memorable”	with	the	sail-by?

Building	Buffers

Noting	opportunities	for	prevention	that	weren’t	taken	is	equivalent	to	saying	that	an	accident	had	a	number	of
“causes.”	These	are	expressed	in	the	negative,	things	that	weren’t	done.	This	is	different	than	the	physical	processes	at
work	in	a	malfunction.	Batteries	dying	or	bolts	breaking	may	be	identified	as	a	proximate	cause,	but	these	immutable
facts	of	reality	can’t	be	used	by	themselves	as	a	basis	for	future	prevention.	That’s	because	the	laws	of	physics	are	a
given:	we	can’t	fix	things	by	supernaturally	declaring	steel	to	have	a	different	strength,	or	by	having	a	particular
chemical	compound	magically	hold	more	electrons.	Prevention	always	considers	alternative	courses	of	action:	things
that	weren’t	done	in	the	past,	but	you	hope	to	do	in	the	future.	Next	time,	we	will	use	a	stronger	bolt,	employ	a	battery
that	stores	a	bigger	charge,	use	the	machine	differently,	make	more	frequent	inspections,	etc.

Along	these	lines,	poring	over	a	really	thorough	accident	report	can	feel	unsatisfying	when	it	reads	something	like:
“The	pilot	was	fatigued	AND	the	landing	was	hard	AND	the	crew’s	training	outdated	AND	critical	routine	maintenance
was	neglected	AND	the	weather	was	bad	AND	it	was	dark	AND…”	I	think	our	instincts	would	prefer	a	single	cause,	so
we	can	feel	better	by	thinking,	“If	I	just	do	this	one	thing,	then	I’ll	be	safe!”

I	like	getting	deep	into	the	finer	details	of	the	circumstances	surrounding	a	particular	incident	because	it’s	here	you’ll
often	discover	multiple	paths	for	prevention.	This	complexity	is	actually	an	opportunity	because	methods	for
prevention	will	vary	in	cost.	Since	our	prevention	resources	are	scarce	(just	like	our	fix-it	resources),	identifying	and
choosing	the	ones	that	can	be	realistically	implemented	is	key.

With	this	broader	mindset,	you	can	begin	to	think	about	failure	prevention	in	terms	of	buffers.	These	are	all	the	things
that	stand	between	you	and	a	fiery	end.	And	the	more	of	them	the	better!	Your	training,	processes,	procedures,
equipment,	the	prevailing	conditions,	random	chance,	etc.:	these	can	all	work	for	or	against	you.	This	gets	back	to
what	I	said	before	about	similar	situations	ending	with	different	outcomes.	Not	every	tourist	that	goes	swimming	in	the
ocean	with	a	camera	ends	up	drowning.	Some	do,	most	don’t.	Sail-by	salutes	don’t	usually	result	in	a	multi-billion
dollar	loss	(in	fact,	the	Costa	Concordia	had	previously	saluted	Giglio	Island).

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 388

https://www.telegraph.co.uk/news/worldnews/europe/italy/9249234/Calls-for-cruise-ship-sail-by-salutes-to-resume-after-Costa-Concordia-tragedy.html
https://harpers.org/wp-content/uploads/2008/09/HarpersMagazine-1996-01-0007859.pdf
https://www.smh.com.au/lifestyle/preplanned-cruise-stunt-flagged-on-facebook-20120117-1q3n7.html
https://en.wikipedia.org/wiki/Ma%25C3%25AEtre_d%2527h%25C3%25B4tel
https://www.smh.com.au/lifestyle/preplanned-cruise-stunt-flagged-on-facebook-20120117-1q3n7.html
https://www.telegraph.co.uk/news/worldnews/europe/italy/9018869/Cruise-disaster-captain-neared-rocks-in-Facebook-stunt-for-friends-family.html
http://www.spiegel.de/international/europe/cutting-close-to-shore-a-nice-tradition-normalissima-a-809580.html
http://www.bbc.com/news/world-europe-24733882
https://www.cruisecritic.com/articles.cfm?ID=2996
https://artoftroubleshooting.com/2012/01/10/change-just-one-thing/
https://artoftroubleshooting.com/2013/05/28/the-economics-of-troubleshooting/
https://www.youtube.com/watch?v=ndiYAWdDK84

Troubleshooting	Lessons

You	may	be	thinking	that	these	human	factors	are	outside	the	realm	of	troubleshooting.	If	“Look	at	me!”	leads	to	harm,
it’s	hardly	the	fault	of	the	machine,	right?	Was	that	selfie	stick	and	camera	operating	properly	when	those	two	students
on	Bondi	Rescue	got	caught	in	a	riptide?	Yes.	We	know	this	for	certain	because—the	footage	is	included	in	the
episode!	Likewise,	a	ship	can	be	steered	in	any	direction	of	the	compass.	Whether	towards	a	rocky	reef	or	to	the	safety
of	open	water,	the	rudder	and	engines	will	happily	oblige.	In	either	case,	you	can’t	say	there	has	been	a	mechanical
malfunction.

But	we	can’t	stop	there,	simply	concluding	that	“the	machine	was	operating	properly,”	and	wash	our	hands	of	the
incident.	Nothing	to	see	here,	folks!	Move	along.	No,	that	goes	against	the	ethos	of	what	I	try	to	teach	here.	Humans
and	machines,	when	combined	together,	form	a	super-system.	The	interaction	between	man	and	machine	should	be
designed	to	gracefully	accommodate	our	human	tendencies,	good	or	bad.	To	that	end,	I	have	a	few	suggestions	for
ways	to	troubleshoot	“Look	at	me!”	problems:

Transparency:	we’ve	looked	at	many	ways	that	social	pressures	can	lead	to	accidents.	It	may	surprise	you	that	the
same	forces	can	also	be	harnessed	in	their	prevention.	It’s	not	pleasant	to	always	be	monitored	while	at	work,	but	if
you’re	entrusted	with	lives	and	expensive	property…sorry.	Prior	to	the	accident,	the	captain	of	the	Costa	Concordia
turned	off	the	alarm	on	the	ship’s	navigation	system.	If	I	was	the	administrator	of	such	a	system,	such	a	deactivation
would	instantly	light	up	the	phones	of	senior	management.	Everyone,	including	the	captain,	would	know	that	such
a	move	would	be	widely	reported	and	scrutinized.	It	would	be	a	BIG	DEAL.	There	would	be	paperwork.	There
would	be	conference	calls.	Oh	yes,	there	would	be	many	conference	calls.
The	Sterile	Cockpit:	machines	often	require	the	dedicated	focus	of	their	operators	for	tricky	maneuvers.	Think	of:
landing	an	airplane,	docking	a	supertanker,	or	backing	up	a	fuel	truck.	During	these	critical	moments,	a	crew’s
attention	needs	to	be	vigorously	defended	from	unnecessary	distractions.
Gear	up:	if	there’s	no	way	to	stop	the	showboaters,	it’s	time	to	deploy	bubble-wrap,	bumpers,	life	jackets,	helmets,
harnesses,	shin	guards,	and	belay	devices.	If	you’re	ultimately	responsible	for	accidents,	the	use	of	safety	gear	may
need	to	be	official	policy.	Businesses	that	have	tourists	doing	semi-dangerous	things	(e.g.,	kayaking,	zip-lining,
snorkeling,	rock	climbing,	etc.)	understand	this:	they	know	that	they’re	dealing	with	inexperienced	people	who
lack	the	ability	to	accurately	assess	their	capabilities	with	respect	to	the	activity.	When	that’s	the	case,	get	out	the
pads!
Create	safe	spaces	for	distracted	self-promotion:	if	you	know	that	people	like	to	take	selfies	next	to	a	cliff,	then	it
might	be	time	to	install	railings	and	warning	signs.	Interestingly,	some	cruise	lines	implement	a	variation	on	this
theme,	whereby	they	create	a	designated	time	for	passengers	and	the	crew	to	interact.	Whether	it’s	called	a
“Captain’s	Dinner,”	“Captain’s	Gala,”	or	“Captain’s	Ball,”	the	idea	is	that	people	are	going	to	want	to	talk	to	the
officers	and	take	pictures	with	them.	So,	you	create	a	designated	time	for	this	attention	exchange	that	doesn’t
interfere	with	the	crew’s	official	duties.	If	it	simultaneously	allows	the	crew	to	feel	honored	and	quenches	the
public’s	desire	for	voyeurism	that	might	otherwise	be	channeled	in	distracting	ways,	these	events	can	even	be
considered	a	roundabout	safety	measure.
Prompted	(or	forced)	to	do	the	right	thing: 	the	latest	version	of	Apple’s	iOS	includes	a	standard	feature	to	prevent
access	to	your	smartphone	while	driving	(good	idea,	but	I	suspect	that	most	people	turn	it	off).	Make	a	distraction-
free	environment	the	default,	or	enforce	preferred	usage	with	something	like	a	speed	governor.	Procedures	and	the
culture	of	a	workplace	can	also	mitigate	showboating:	your	training,	professional	expectations,	organizational
policies,	and	colleagues	may	provide	a	much-needed	reminder	that	a	selfie	can	wait.
Raise	awareness:	help	people	understand	the	consequences	of	showboating.	On	that	note,	I	leave	you	with	this
eery	video	of	the	Costa	Concordia	wreck.

References:

Header	image:	Rothstein,	A.,	photographer.	Showboat	anchored	at	levee,	Saint	Louis,	Missouri.	Missouri	Saint
Louis	Saint	Louis.	United	States,	1939.	Jan.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2017724674/.
1	Lao	Tzu	and	Stephen	Mitchell,	Tao	Te	Ching:	An	Illustrated	Journey	(New	York:	HarperCollins,	1999),	verse	24.

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!” 	was	originally	published	June
13,	2018.

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 389

https://en.wikipedia.org/wiki/Costa_Concordia_disaster#Situation_on_the_bridge
https://en.wikipedia.org/wiki/Sterile_Cockpit_Rule
http://nymag.com/selectall/article/how-to-turn-off-ios-11s-driving-mode.html
https://en.wikipedia.org/wiki/Speed_limiter
https://www.youtube.com/watch?v=na1TgumeDvw
https://www.loc.gov/item/2017724674/

Notes:

On	Selfies	And	Showboating:	Troubleshooting	The	Imminent	Dangers	Of	“Look	At	Me!”	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 390

Accident	Causes	≠	Preventative	Measures

Action	should	be	taken	before	a	thing	has	made	its	appearance;	order	should	be	secured	before	disorder	has
begun.

Tao	Te	Ching	(verse	64)	1

Troubleshooters	are	naturally	curious	about	prevention.	With	sweat	on	your	brow	and	grease	under	your	fingernails	(or
the	digital	equivalent	thereof),	your	mind	instinctively	wonders:	“Does	this	have	to	happen	again?”	Clients	may	like	a
quick	fix	and	a	return	to	business	as	usual,	but	they	will	appreciate	you	on	a	deeper	level	if	you	can	show	them	how	to
stop	a	problem	from	recurring	in	the	future.	This	is	the	realm	of	awkward	hugs	(in	exchange	for	problems	bested,	I’ve
gotten	a	few	of	these).

The	script	for	a	preventative	remedy	seems	straightforward.	First,	identify	the	cause	of	a	malfunction.	But	hold	on,	what
does	it	really	mean	for	something	to	be	the	cause	of	an	incident?	That	might	seem	like	a	silly	question,	but	I	had	an
important	realization	about	causes	while	writing	my	last	article	about	selfies	and	showboating:	both	the	physical
processes	that	lead	to	an	accident	and	the	measures	to	prevent	them	are	often,	and	confusingly,	referred	to	as	“causes.”
As	you’ll	see,	they	are	different	concepts,	and	understanding	the	distinction	is	critical	for	both	your	repair	and
prevention	efforts.

Ripped	From	the	Headlines

To	show	you	how	the	two	meanings	of	the	word	“cause”	are	conflated	in	popular	usage,	I	did	a	quick	scan	of	the

Accident	Causes	≠	Preventative	Measures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 391

https://www.youtube.com/watch?v=WkM2sgGUg2I
https://artoftroubleshooting.com/2018/06/12/on-selfies-and-showboating-troubleshooting-the-imminent-dangers-of-look-at-me/

news.	It	didn’t	take	long	for	me	to	find	examples	of	the	confusion	between	accident	processes	and	prevention	methods.
Here	are	a	few	quotes	that	I	pulled	from	recent	news	stories.	While	reading,	pay	close	attention	to	the	word	“caused”
(and	the	synonymous	phrase	“resulted	in”):

“The	Ionia	County	Sheriff’s	office	responded	to	an	accident	on	Wednesday	morning	that	was	most	likely	caused	by
fog.”	WILX	News	10,	July	25,	2018
“Unenforced	policies,	lack	of	communication	and	ineffective	traffic	rules	resulted	in	last	year’s	double-fatality
accident	at	SSR	Mining	Inc.’s	Marigold	Mine,	according	to	an	investigations	report	from	the	Mine	Safety	and	Health
Administration.”	Elko	Daily	Free	Press,	August	6,	2018
“A	tug	operator	eventually	pleaded	guilty	to	involuntary	manslaughter,	acknowledging	that	the	accident	was
caused	largely	due	to	his	use	of	a	cellphone	and	laptop	while	steering	the	barge.”	USA	Today,	July	20,	2018

Visibility,	communication,	and	the	presence	of	distractions	were	obviously	relevant	circumstantial	factors	in	these
incidents.	Perhaps	improvements	in	these	areas	would	have	resulted	in	these	accidents	never	happening.	However,
advanced	students	are	probably	wondering:	has	there	ever	been	a	catastrophe	which	involved	instances	of	good
visibility,	clear	communication,	or	focused	operators?	(Answer:	yes.)	And	further,	if	their	presence	is	optional,	how	can
we	point	at	something	and	say	confidently,	“We’ve	found	it—forever	and	always,	this	is	the	cause!”?

In	the	headlines	above,	many	of	the	causes	listed	are	statements	of	things	missing	or	not	done	within	the	accident’s
context:	there	was	a	lack	of	visibility,	a	failure	to	communicate,	traffic	rules	weren’t	followed,	etc.	Fog	is	simply	water
droplets	suspended	in	the	air.	Even	when	I	tried	the	foul-tasting	fernet	once,	I	never	saw	a	weather	phenomenon	grab	a
steering	wheel	and	lead	a	car	into	a	ditch.	Water	vapor	is	not	a	supernatural	force,	so	of	course	we	know	what	is
meant	when	someone	says	that	“fog	caused	an	accident”:	namely,	that	it’s	difficult	to	safely	steer	an	automobile	when
you	can’t	see.	This	implies	that	something	was	missing	that	might	have	stopped	the	accident.	What	was	it?	Adequate
visibility.

Here’s	the	problem:	thinking	of	causes	in	this	way	involves	a	semantic	sleight	of	hand,	because	these	are	actually
pitches	for	prevention.	When	strongly	worded	like	this,	a	“cause”	appears	to	the	reader	as	authoritative	and	definitive,
perhaps	even	singular.	The	underlying	message	is:	“Sleep	well	tonight	reader,	we’ve	figured	this	one	out.”	Doing	so,
we’ve	skipped	over	the	accident	processes	and	are	boldly	projecting	out	into	the	future,	using	subjective	and	value-
laden	opinions	about	the	best	way	to	prevent	a	certain	type	of	accident.	That’s	because	avoidance	involves	an
economic	calculation,	the	result	of	choosing	among	alternatives	in	the	face	of	scarcity.

Causes:	Inevitable	and	Finite

cause,	noun
1	b:	something	that	brings	about	an	effect	or	a	result

Merriam-Webster

Let’s	deal	first	with	the	sense	that	a	cause	is	that	“something,”	referenced	in	the	dictionary	definition	above,	which
results	in	a	given	effect.	When	investigating	an	accident	or	malfunction,	we’re	talking	about	that	particular	set	of
circumstances	and	actions	under	which	an	incident	would	be	certain.

There’s	a	relentless	march	of	logic	at	work	here:	a	ship	ramming	into	a	reef	at	full	speed	will	result	in	a	dent	(or	worse).
Contacting	the	rocks	with	sufficient	force	will	cause	the	hull	to	tear.	On	a	car,	applying	the	brakes	with	completely
worn	pads	will	score	the	rotors.	Metal	touching	metal	causes	telltale	lines	on	the	surface	of	the	rotors.	Computer	code
that	attempts	to	access	restricted	memory	results	in	a	segfault;	a	program	that	tries	to	interact	with	RAM	that	is	off-
limits	causes	the	operating	system	to	shut	it	down.	Just	like	the	sun	rising	in	the	east	and	setting	in	the	west,	these
specific	pre-conditions	and	actions	produce	inevitable	results.

However,	you	can	probably	spot	the	troubleshooting	dilemma	that	this	type	of	surety	presents:	if	something	is
inevitable,	then	nothing	can	stop	it!	Preventative	measures	can’t	be	marshaled	at	this	stage	of	the	analysis	because
we’re	dealing	with	immutable	truths	of	reality.	You	can’t	change	the	physics	of	steel	contacting	rock,	nor	change	the
logic	of	adding	2	and	2	to	get	4.

Even	if	you	did	have	the	ability	to	change	the	laws	of	physics,	you	wouldn’t	necessarily	want	to	be	able	to
Accident	Causes	≠	Preventative	Measures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 392

https://web.archive.org/web/20180725221455/https://www.wilx.com/content/news/Fog-the-cause-of-morning-accident-that-impaled-items-into-a-house-489150941.html
https://elkodaily.com/mining/msha-reports-on-cause-of-fatal-mine-accident/article_f3fe56ce-edd4-501d-88a6-f9e4b93f97a3.html
https://www.usatoday.com/story/news/nation-now/2018/07/20/before-duck-boat-accident-missouri-vehicles-had-history-fatalities/806081002/
https://en.wikipedia.org/wiki/Fernet
https://www.merriam-webster.com/dictionary/cause
https://artoftroubleshooting.com/2018/06/12/on-selfies-and-showboating-troubleshooting-the-imminent-dangers-of-look-at-me/
https://en.wikipedia.org/wiki/Segmentation_fault

“troubleshoot”	at	this	fundamental	level	of	nature.	Imagine	being	able	to	“fix”	shipwrecks	by	being	able	to	declare	that
steel	can’t	be	damaged	by	rock.	First,	it	would	take	magical	powers	and	second,	there	would	be	unintended
consequences:	presumably,	it	would	be	impossible	to	stop	any	ship!

The	ways	that	steel	and	rock	interact	are	dependent	upon	physical	laws,	and	their	predictability	is	something	you	rely
upon.	That	reality	might	not	be	favorable	when	the	context	is	a	ship’s	hull	and	a	reef.	But,	if	you’re	quarrying	stone,
you’d	like	your	steel	drill	to	actually	have	an	effect	on	the	rock.	After	all,	if	you’re	going	to	sweat	all	day	in	the	baking
sun	while	swinging	a	hammer,	it	would	be	nice	for	it	to	matter.	A	solid	object	exerting	a	force	upon	another	solid
object	can	be	a	benefit	or	a	hazard,	depending	on	the	context.

Finally,	the	causes	which	we	are	called	upon	to	discover	don’t	necessarily	have	to	originate	in	the	fixed	laws	of	the
universe;	they	could	simply	be	the	rules	under	which	you	choose	to	work.	For	example,	an	operating	system	isn’t
required	to	jealously	guard	protected	memory.	Some	OS’s	may,	some	may	not.	A	protected	memory	scheme	is	a
choice	made	by	software	architects	and	adopted	voluntarily;	it’s	not	a	Law	of	the	Universe	you’ll	find	described	in	a
book	by	Stephen	Hawking.

If	you’re	a	coder	developing	a	product	designed	to	work	on	a	particular	platform,	the	rules	of	the	operating	system
are	equivalent	to	a	physical	law	like	gravity.	In	the	case	of	a	software	project,	creating	a	new	operating	system	just	to
run	your	code	would	probably	be	too	costly	and	limit	the	appeal	of	your	product.	Therefore,	the	rules	of	the	OS	are
something	you’ll	just	have	to	accept.

One	way,	among	many,	to	intervene…
(image:	Library	of	Congress)

The	Infinite	Varieties	of	Preventative	Measures

The	archetype	of	causality	research	was:	where	and	how	must	I	interfere	in	order	to	divert	the	course	of	events
from	the	way	it	would	go	in	the	absence	of	my	interference	in	a	direction	which	better	suits	my	wishes?	In	this
sense	man	raises	the	question:	who	or	what	is	at	the	bottom	of	things?

Human	Action,	Ludwig	von	Mises

Preventative	measures	can’t	alter	the	laws	of	physics	or	logic;	change	can’t	be	effected	at	this	level	of	reality.	Therefore,
the	aim	of	prevention	is	to	intervene	before	an	inevitable	process	can	get	rolling.	That	is,	we	want	to	keep	our	ship’s

Accident	Causes	≠	Preventative	Measures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 393

https://www.loc.gov/resource/anrc.10679/
https://mises.org/library/human-action-0/html/pp/617

hull	from	ever	making	contact	with	that	rocky	reef.	We	desire	to	have	the	brake	pads	be	the	only	surface	that	touches
the	rotor	on	a	set	of	brakes.	We	want	our	computer	program	to	stay	within	the	bounds	of	the	memory	allocated	to	it,
thus	ensuring	that	the	operating	system	will	let	it	run	in	peace.

Once	we’ve	identified	the	thing	we	want	to	avoid,	prevention	enters	the	realm	of	infinite	possibilities.	Take	our	ship
and	rocky	reef,	for	example.	There	are	countless	measures	we	could	take	to	prevent	a	shipwreck:	always	maintain	a
certain	distance	from	the	shore,	install	a	sonar	warning	system	that	detects	obstacles,	vow	to	navigate	only	in	good
weather	or	during	daylight,	consistently	maintain	the	steering	and	propulsion	systems	so	they	are	always	ready	to	make
course	corrections,	create	a	detailed	map	of	hazards,	etc.	We	could	even	keep	the	ship	safely	anchored	in	the	harbor	at
all	times!

That’s	a	long	list	of	options	for	this	particular	problem,	and	you	can	probably	think	of	many	more.	But,	you’re	probably
wondering	if	preventative	measures	are	really	spread	over	an	infinite	realm	of	possibilities.	You	might	think	that	I’m
exaggerating	when	I	say	that	preventative	measures	are	endless.	However,	merely	by	adding	time	as	a	variable	to	the
mix,	you	can	easily	see	that	the	opportunities	to	intervene	are	boundless.

Imagine	a	timeline,	ending	at	the	point	where	an	accident	was	inevitable	(t0),	stretching	back	forever	in	time:

t-∞	…	t-5	→	t-4	→	t-3	→	t-2	→	t-1	→	t0

Each	mark	on	our	timeline	represents	the	passage	of	one	unit	of	time.	I’ve	used	the	 NASA	T-minus	countdown	style,
which	shows	the	amount	of	time	remaining	before	an	event	happens.	The	units	on	your	incident	timeline	could	be
seconds,	hours,	days,	weeks,	or	even	fortnights!	The	scale	doesn’t	matter,	because	any	division	of	time	we	can	pick	is
infinitely	divisible.	To	prevent	an	accident,	all	you	need	to	do	is	change	the	course	of	events	before	they	become	a
certainty.	By	definition,	that	means	you	could	have	intervened	anywhere	on	the	timeline	before	the	end.	You	could
have	chosen	to	interfere	at	t-1,	t-5,	t-20,	t-35,	t-35.1,	t-35.2,	t-35.3,	etc.	to	infinity.

When	you	combine	the	when	(the	timing	of	an	intervention)	with	the	power	of	our	imaginations	to	choose	the	 how,	it’s
easy	to	see	that	the	raw	number	of	possibilities	for	preventing	any	accident	are	without	end.	That	might	make	you	feel
better,	knowing	that	you’ve	got	a	lot	of	choice	for	prevention.	It	might	also	make	you	feel	overwhelmed!	Take	comfort
in	the	fact	that,	while	preventative	measures	are	indeed	infinite,	there	will	only	be	a	small	subset	of	options	that
simultaneously	meet	your	particular	situation’s	constraints	(practical,	legal,	economic,	etc.).

Absent	Space

A	ship	in	harbor	is	safe,	but	that	is	not	what	ships	are	built	for.

John	A.	Shedd

In	the	news	snippets	above,	the	reporters	suggested	that	not	driving	in	fog,	better	communication,	and	paying	attention
while	towing	a	barge	would	have	prevented	those	accidents.	However,	because	options	for	prevention	are	without
bound,	you	could	easily	have	suggested	alternative	“causes”	with	headlines	like:

“Operating	a	car	causes	car	accident.”
“Humans	present	at	a	mine	result	in	deaths.”
“Two	boats	using	the	same	river,	at	the	same	time,	causes	a	collision.”

In	other	words,	you	could	solve	the	problem	of	mine	accidents	killing	people	by—not	having	people	near	the	mine	at
all	(maybe	one	day	robots	will	do	this	dangerous	work…).	Driving	accidents	could	be	prevented	by—wait	for	it—not
driving!	Boats	running	into	each	other	on	a	river	could	be	solved	by	only	allowing	one	boat	at	a	time	to	use	the
waterway	(that	is,	have	other	boats	be	absent	as	a	matter	of	policy).

Within	the	range	of	alternative	prevention	methods,	many	will	be	impractical,	unpopular,	unenforceable,	costly,
unacceptable	to	the	prevailing	culture,	etc.	However,	it	doesn’t	make	them	any	less	effective.	As	a	troubleshooter,	it’s
important	to	recognize	when	value	judgements	have	been	injected	into	an	analysis.	If	you	understand	that	prevention
methods	are	infinite,	you	can	ask	“Out	of	the	many,	why	are	we	focusing	on	these	few?”

Accident	Causes	≠	Preventative	Measures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 394

https://www.nesdis.noaa.gov/content/top-5-terms-you-should-know-satellite-launch
https://en.wikipedia.org/wiki/Fortnight
https://quoteinvestigator.com/2013/12/09/safe-harbor/

When	considering	how	to	stop	the	next	accident	from	occurring,	what	is	promoted	as	acceptable	will	be	intertwined
with	the	current	social,	cultural,	and	political	context.	Given	that	setting,	there	will	often	be	a	debate	among	competing
interests	over	whose	vision	for	prevention	will	prevail.	Nuclear	power	is	a	good	example:	if	you	believe	that	electricity
from	this	source	cannot	be	generated	safely,	then	preventative	methods	will	focus	on	prohibition	(i.e.,	the	absence	of	a
nuclear	power	plant	is	the	best	way	to	ensure	a	meltdown	never	happens).	Likewise,	the	owners,	operators,
employees,	and	consumers	of	nuclear	power	will	each	have	their	own	interests	and	stances	on	prevention.

I	re-watched	Jaws	recently,	that	venerable	first	blockbuster,	and	was	reminded	how	it	dramatizes	the	competition	of
interests	with	differing	visions	of	prevention.	Of	course,	I	remembered	there	was	a	big	shark	involved	somehow	and	the
famous	ad-lib	“You’re	gonna	need	a	bigger	boat.” 	What	I	had	forgotten	about	was	the	tension	between	the	stewards	of
the	beach	town	over	the	correct	means	to	stop	the	next	shark	attack.	At	first,	Amity	Island’s	police	chief	Martin	Brody
and	mayor	Larry	Vaughn	have	very	different	ideas,	both	about	the	nature	of	the	threat	and	the	remedy.	In	one	heated
argument,	Mayor	Vaughn	defends	the	economic	interests	of	the	town,	saying	“Look,	we	depend	on	the	summer	people
for	our	very	lives…”;	Brody	counters	with	“Larry,	we’re	going	to	have	to	close	the	beaches!”	You	don’t	have	to	go	full-
on	X-Files	or	Alex	Jones,	but	when	a	particular	line	of	prevention	is	being	promoted	or	closed	off	(particularly	within	a
political	context),	it’s	always	a	good	idea	to	ask	“Cui	bono?”

When	it	comes	to	conceptualizing	prevention,	an	easy	place	to	start	is	with	absence.	A	real	world	example	of	this
principle	in	action	are	traffic	patterns:	whether	it’s	a	road,	airport,	or	harbor,	it’s	desirable	to	have	vehicles	travel	in	the
same	direction	when	in	close	proximity.	After	enough	head-on	collisions	and	rush	hour	jams,	our	distant	ancestors
figured	out	that	a	simple	social	convention	could	create	an	absence	of	vehicle-on-oncoming-vehicle	hazards.	The
origin	of	one-way	traffic	patterns	goes	back	to	at	least	ancient	Roman	civilization	(“…a	key	part	of	the	traffic	system	at
Pompeii	is	the	use	of	one-way	streets…”).	I	visited	the	Panama	Canal,	and	it	was	even	in	use	at	this	feat	of	“modern”
engineering.	Traffic	along	the	waterway	flows	one-way	at	a	time,	because	the	canal	has	some	narrow	parts	that	make
bi-directional	movement	dangerous	(“ships	move	in	one	direction	at	a	time	due	to	safety	constraints	to	cross	the
Culebra	Cut.”).

My	guess	is	that	a	uni-directional	flow	for	movement	is	likely	as	old	as	humanity	itself,	arising	organically	from	the
problems	of	sharing	a	common	route	of	travel.	Even	at	Thanksgiving,	we	pass	the	food	around	the	table	in	only	one
direction.	(Oh,	how	it’s	torture	when	the	mashed	potatoes	start	with	the	person	next	to	you—in	the	opposite	direction!)
These	schemes	are	so	wide-spread	because	the	principle	is	easy	to	understand:	let	protocol	lead	to	the	absence	of
hazards.

Positives	and	Negatives

When	it	comes	to	troubleshooting,	a	“cause”	can	have	a	positive	or	negative	meaning.	I’m	not	going	to	fight	the
common	usage,	but	merely	want	you	to	think	about	both	sides.	The	first	sense	features	the	word	as	a	positive	concept,
that	“something”	that	is	present	and	directly	brings	about	an	effect.	The	other	meaning	is	about	what	was	missing:	the
policies	or	procedures	that	weren’t	followed,	the	lack	of	situational	awareness	by	an	operator,	the	ignorance	of	a	better
way,	etc.

Understanding	the	physical	and	logical	processes	that	underlie	a	bad	event	is	the	key	to	stop	it	from	recurring	in	the
future.	Once	the	precise	mechanisms	become	clear	(hull	hitting	rock,	restricted	memory	being	accessed,	etc.),	they
become	the	focal	point	of	your	prevention	efforts.	You	can	then	brainstorm	the	myriad	ways	to	tweak	reality	before	the
inevitable	happens,	choosing	both	the	means	and	the	timing.

Another	conclusion	we	can	draw	from	a	low-level	analysis	of	how	failures	occur	is	that	accidents	are	never	accidental.
Mishaps,	large	or	small,	emanate	from	predictable	and	ultimately	knowable	facts	of	reality;	the	only	unexpected	thing
about	them	is	the	feeling	of	being	caught	unawares	(I	touched	on	this	in	Failure	Most	Foul:	“Isn’t	it	interesting	that	we
live	in	a	world	where	it’s	certain	that	every	machine	will	eventually	break	down,	and	yet	our	experience	of	those
failures	is	one	of	surprise?”).

Accidents	involve	long	chains	of	causation,	going	as	far	back	as	you	care	to	look.	Understanding	that	logical
progression	and	then	deciding	how	to	interfere	are	two	related,	but	ultimately	different,	things.	As	your	awareness	of
the	individual	links	grows,	so	too	will	your	ability	to	choose	prevention	methods	that	merit	your	precious	time	and
scarce	intervention	resources.

References:

Accident	Causes	≠	Preventative	Measures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 395

http://www.guinnessworldrecords.com/world-records/first-film-blockbuster
https://www.cinemablend.com/new/Hilarious-Way-Jaws-Came-Up-With-Its-Most-Famous-Line-116997.html
https://www.youtube.com/watch?v=0z3Rs7VMIs4
https://en.wikipedia.org/wiki/Cui_bono
https://www.forbes.com/sites/drsarahbond/2017/10/16/pompeii-had-some-intense-rush-hour-traffic-too/
https://www.marineinsight.com/guidelines/how-the-water-locks-of-panama-canal-work/
https://artoftroubleshooting.com/2013/11/15/failure-most-foul-fraud-and-sabotage/

Header	image:	Railroad	Wreck.	1922.	[Photograph]	Retrieved	from	the	Library	of	Congress,
https://www.loc.gov/item/2016833122/.
1	Lao	Tze,	translated	by	James	Legge.	The	Sacred	Books	of	China,	The	Texts	of	Taoism 	(Oxford:	The	Clarendon
Press,	1891).	Retrieved	from	the	Internet	Archive,	https://archive.org/details/wg939/page/106/mode/2up.

Accident	Causes	≠	Preventative	Measures	was	originally	published	February	27,	2019.

Notes:

Accident	Causes	≠	Preventative	Measures	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 396

https://www.loc.gov/item/2016833122/
https://archive.org/details/wg939/page/106/mode/2up

Acknowledgements
From	the	First	Edition	(May	8,	2014).

I	am	grateful	for:

The	love	and	support	of	my	parents.	The	stable	foundation	they	have	provided
since	day	one	has	made	everything	I	do	possible.
My	aunt,	Joan	Anne	Maxham,	who	faithfully	edited	every	word	of	this	text	as	I
serially	published	The	Art	Of	Troubleshooting	to	my	blog	over	the	course	of	two
years.	“Aunt	Persnickety”	gave	great	feedback	on	both	the	small	details	and	the	big
picture.	Considering	that	she	loves	to	find	typos	in	the	New	York	Times,	I	can	only
assume	that	fixing	my	prose	was	even	more	satisfying.
The	Troubleshooters	I	interviewed,	for	their	deep	insights	and	help	polishing	my
ideas:	Alex	Chaffee,	Ken	Fechner,	Jamie	Karrick,	Rich	Kral,	Karl	Kuehn,	Dan
McCormick,	Mike	McCormick,	Austin	Quade,	Gerald	Quade,	and	Jeremy	Sheetz.
The	following	people,	who	gave	generously	of	their	time	to	provide	feedback	or	aid
in	numerous	other	ways:	Ivan	Batanov,	Ben	Bayer,	John	Brogan,	Sam	Carter,	Alex
Chaffee,	Brandon	Clow,	Darrell	Clow,	Elana	Connor,	Dennis	Crall,	Lance	Fuller,
Jason	Gollan,	Otto	Grajeda,	Dave	Hoffer,	Micah	Joel,	Jamie	Karrick,	Eric	Lujan,	Phil
Lukish,	Stan	Mars,	Amanda	Maxham,	Cynthia	Maxham,	John	Maxham,	Mike
McCormick,	Charlie	Miller,	Antonis	Papatsaras,	Austin	Quade,	Steve	Renaker,	Lou
Rosenfeld,	Brad	Ross,	George	Rothdrake,	Adam	Rutland,	Greg	Schwendinger,
Damian	Spain,	Sean	Tario,	James	Thomassen,	Jimmy	Tobias,	Matt	West,	Harold
Woo,	Jacob	Woolcutt,	and	Matt	Work.
My	fellow	co-founders	of	Discovery	Mining:	Matt	Work,	Leslie	Brennan,	and	Andy
Jenks.	What	a	blessing	it	was	to	fall	in	with	these	guys!	Later	on,	I	would	hear	horror
stories	of	bad	matches	among	business	partners,	so	this	realization	was	even
stronger	after-the-fact.	One	of	the	rare	teams	I	have	worked	on	that	truly	meets	the
definition	of	“synergistic,”	with	a	result	much	greater	than	the	already	amazing
component	parts.	We	struggled	and	overcame,	while	maintaining	our	civility	and
integrity.
The	entire	Discovery	Mining	engineering	team,	especially	Antonis	Papatsaras,	Steve
Renaker,	and	Damian	Spain.	Every	day,	it	was	a	pleasure	to	work	with	you	and	the
amazing	talent	we	had	the	fortune	to	assemble.	The	mind-bending	challenges	we
encountered	(and	mostly	bested)	were	the	genesis	of	the	material	in	this	book.
Brewster	Kahle,	who	offered	me	an	internship	at	the	Internet	Archive	while	in
college.	That	formative	experience	led	to	my	first	“real”	job	at	his	company	Alexa,
and	a	move	to	San	Francisco.	Alexa	is	where	I	would	meet	the	people	with	whom	I
would	eventually	start	Discovery	Mining.
The	Wednesday	Night	Wrenchers,	which	first	met	at	Matt	Work’s	garage	and	now

Acknowledgements	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 397

at	the	Piston	&	Chain	motorcycle	club	in	San	Francisco.	The	principles	described	in
this	book	are	seen	in	action	every	Wednesday	night!
Inspiring	teachers,	who	kindled	and	nurtured	a	passion	for	learning	and	discovery:
Ms.	Stern,	Mr.	Bremer,	Mr.	Heiks,	and	Dr.	Hester.

Acknowledgements	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 398

About	The	Author

The	author	at	the	top	of	Mt.	Fuji.	Getting	here	required	troubleshooting—his	body’s	desire	to	turn	back!

Jason	Maxham’s	eclectic	background	eventually	led	him	to	think	and	write	about	troubleshooting	in	a	general	way.
He’s	an	aviator,	audiophile,	choral	singer,	foodie,	motorcyclist,	programmer,	world	traveler,	and	entrepreneur	who’s
been	involved	in	multiple	startups—most	successfully	as	co-founder	and	CTO	of	Discovery	Mining.

He’s	very	interested	in	your	thoughts	about	this	book,	so	feel	free	to	drop	him	a	line	at:
bookfeedback@artoftroubleshooting.com

About	The	Author	|	The	Art	Of	Troubleshooting	|	Jason	Maxham 399

mailto:bookfeedback@artoftroubleshooting.com

	Table Of Contents
	© 2023 Jason Maxham
	Dedication
	Meet The Troubleshooters
	Part 1: Introductions
	The Big Idea
	One-size-doesn’t-fit-all
	The Economics Of Troubleshooting
	The Right Tool For The Job
	There’s A Fine Line Between Engineering, Invention, And Troubleshooting
	Beginnings, Middles, And Ends
	You Won’t Guess The Hard Part
	Is Troubleshooting A Science?
	Part 2: Strategies
	The Order Of Things
	Skillful Questioning, Part 1
	Skillful Questioning, Part 2
	Put It Down And Come Back To It Later…
	Follow The Chain
	Bare Bones: Back To The Basics
	Does It Need To Be Fixed?
	The Phone Is Ringing, So Answer It
	Duplicate The Problem
	Failing To Fail (Duplicate The Problem, Part 2)
	Defaults And Reboots
	Change Just One Thing
	The Way It Is And The Way It Was
	Is It Plugged In?
	A Different Point Of View
	Same Symptom, Different Causes
	Improving the Environment
	Copy One That Works
	Let’s Be Reasonable
	Know Your Limits
	Where Do I Begin?
	What’s Changed?
	Dedicated And Shared Resources
	A Common Problem
	Clear Up To Here
	Team Spirit
	Bottlenecks
	How Is It Supposed To Work?
	Repair Or Replace?
	The 50 Percent Rule: Repair Or Replace, Revisited
	Talking About Your Problems
	Starting Over: Rebuilding And Reinstalling
	Border Lines
	If You Have To Force It, Something Is Probably Wrong
	What We Bring With Us: “I Want One Of These”
	What Else Could I Be Doing?
	Part 3: Virtues
	Skepticism
	Listen Up
	Curiosity
	Out Of Your Vulcan Mind
	Creativity
	Be Present
	Setting Boundaries
	Part 4: Cleaning Up
	Is This Normal? An Ode To Data Collection
	Zen And The Art Of Routine Maintenance
	Storm’s A-comin’
	Troubleshooting Trees
	Is It Really Fixed?
	Down To The Roots
	Moral Authority
	Making A List, Checking It Off
	Failure Most Foul: Fraud and Sabotage
	Release The Chaos Monkeys: Intentionally Creating Failures
	You’re Not Done Until You Tell Someone Else
	The Boy Who Cried Wolf
	Did It Ever Work?
	Network Effects
	On Selfies And Showboating: Troubleshooting The Imminent Dangers Of “Look At Me!”
	Accident Causes ≠ Preventative Measures
	Acknowledgements
	About The Author

